Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
2.2.ae_i |
$2$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x + 2 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$-1$ |
$[-1, 5, 17, 33, 49, 65, 97, 193, 449, 1025]$ |
$1$ |
$[1, 25, 169, 625, 1681, 4225, 12769, 50625, 231361, 1050625]$ |
$0$ |
$0$ |
$11$ |
$24$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
1.2.ac 2 |
2.2.ac_c |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 - 2 x + 2 x^{2} - 4 x^{3} + 4 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$1$ |
$[1, 5, 1, 9, 41, 65, 113, 289, 577, 1025]$ |
$1$ |
$[1, 13, 25, 169, 1321, 4225, 14449, 74529, 297025, 1047553]$ |
$1$ |
$1$ |
$11$ |
$24$ |
$12$ |
\(\Q(\zeta_{12})\) |
$C_2^2$ |
simple |
2.2.ac_e |
$2$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 - 2 x + 2 x^{2} )( 1 + 2 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$1$ |
$[1, 9, 13, 17, 41, 81, 113, 193, 481, 1089]$ |
$3$ |
$[3, 45, 117, 225, 1353, 5265, 14577, 50625, 246753, 1116225]$ |
$1$ |
$1$ |
$11$ |
$24$ |
$8$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \) |
$C_2$, $C_2$ |
1.2.ac $\times$ 1.2.a |
2.2.a_ae |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$3$ |
$[3, -3, 9, 1, 33, 33, 129, 193, 513, 897]$ |
$1$ |
$[1, 1, 49, 81, 961, 2401, 16129, 50625, 261121, 923521]$ |
$0$ |
$0$ |
$11$ |
$24$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$C_2$ |
simple |
2.2.a_ac |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
|
$1 - 2 x^{2} + 4 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$3$ |
$[3, 1, 9, 25, 33, 97, 129, 289, 513, 961]$ |
$3$ |
$[3, 9, 81, 441, 993, 6561, 16257, 74529, 263169, 986049]$ |
$0$ |
$0$ |
$11$ |
$24$ |
$6$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
$C_2^2$ |
simple |
2.2.a_a |
$2$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 - 2 x + 2 x^{2} )( 1 + 2 x + 2 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$3$ |
$[3, 5, 9, 33, 33, 65, 129, 193, 513, 1025]$ |
$5$ |
$[5, 25, 65, 625, 1025, 4225, 16385, 50625, 262145, 1050625]$ |
$1$ |
$1$ |
$11$ |
$24$ |
$4$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.2.ac $\times$ 1.2.c |
2.2.a_c |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 2 x^{2} + 4 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$3$ |
$[3, 9, 9, 25, 33, 33, 129, 289, 513, 1089]$ |
$7$ |
$[7, 49, 49, 441, 1057, 2401, 16513, 74529, 261121, 1117249]$ |
$1$ |
$1$ |
$11$ |
$24$ |
$6$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
$C_2^2$ |
simple |
2.2.a_e |
$2$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 2 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$3$ |
$[3, 13, 9, 1, 33, 97, 129, 193, 513, 1153]$ |
$9$ |
$[9, 81, 81, 81, 1089, 6561, 16641, 50625, 263169, 1185921]$ |
$0$ |
$0$ |
$11$ |
$24$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
1.2.a 2 |
2.2.c_c |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 2 x + 2 x^{2} + 4 x^{3} + 4 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$5$ |
$[5, 5, 17, 9, 25, 65, 145, 289, 449, 1025]$ |
$13$ |
$[13, 13, 169, 169, 793, 4225, 18577, 74529, 231361, 1047553]$ |
$1$ |
$1$ |
$11$ |
$24$ |
$12$ |
\(\Q(\zeta_{12})\) |
$C_2^2$ |
simple |
2.2.c_e |
$2$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 + 2 x^{2} )( 1 + 2 x + 2 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$5$ |
$[5, 9, 5, 17, 25, 81, 145, 193, 545, 1089]$ |
$15$ |
$[15, 45, 45, 225, 825, 5265, 18705, 50625, 279585, 1116225]$ |
$1$ |
$1$ |
$11$ |
$24$ |
$8$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.2.a $\times$ 1.2.c |
2.2.e_i |
$2$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 2 x + 2 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$7$ |
$[7, 5, 1, 33, 17, 65, 161, 193, 577, 1025]$ |
$25$ |
$[25, 25, 25, 625, 625, 4225, 21025, 50625, 297025, 1050625]$ |
$0$ |
$0$ |
$11$ |
$24$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
1.2.c 2 |
2.3.ag_p |
$2$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 3 x + 3 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$-2$ |
$[-2, 4, 28, 100, 298, 838, 2350, 6724, 19684, 58564]$ |
$1$ |
$[1, 49, 784, 8281, 73441, 614656, 5148361, 44129449, 387459856, 3458263249]$ |
$0$ |
$0$ |
$9$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.3.ad 2 |
2.3.ad_g |
$2$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 - 3 x + 3 x^{2} )( 1 + 3 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$1$ |
$[1, 13, 28, 73, 271, 838, 2269, 6481, 19684, 59293]$ |
$4$ |
$[4, 112, 784, 5824, 66124, 614656, 4964572, 42515200, 387459856, 3501133552]$ |
$1$ |
$1$ |
$9$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.3.ad $\times$ 1.3.a |
2.3.a_ag |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 3 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$4$ |
$[4, -2, 28, 46, 244, 622, 2188, 6238, 19684, 58078]$ |
$4$ |
$[4, 16, 676, 4096, 58564, 456976, 4778596, 40960000, 387381124, 3429742096]$ |
$0$ |
$0$ |
$9$ |
$12$ |
$2$ |
\(\Q(\sqrt{3}) \) |
$C_2$ |
simple |
2.3.a_ad |
$2$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 3 x + 3 x^{2} )( 1 + 3 x + 3 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$4$ |
$[4, 4, 28, 100, 244, 838, 2188, 6724, 19684, 58564]$ |
$7$ |
$[7, 49, 784, 8281, 58807, 614656, 4780783, 44129449, 387459856, 3458263249]$ |
$0$ |
$0$ |
$9$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.3.ad $\times$ 1.3.d |
2.3.a_a |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 9 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$4$ |
$[4, 10, 28, 118, 244, 730, 2188, 6238, 19684, 59050]$ |
$10$ |
$[10, 100, 730, 10000, 59050, 532900, 4782970, 40960000, 387420490, 3486902500]$ |
$2$ |
$2$ |
$9$ |
$24$ |
$4$ |
\(\Q(i, \sqrt{6})\) |
$C_2^2$ |
simple |
2.3.a_d |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 3 x^{2} + 9 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$4$ |
$[4, 16, 28, 100, 244, 622, 2188, 6724, 19684, 59536]$ |
$13$ |
$[13, 169, 676, 8281, 59293, 456976, 4785157, 44129449, 387381124, 3515659849]$ |
$2$ |
$2$ |
$9$ |
$24$ |
$6$ |
\(\Q(\zeta_{12})\) |
$C_2^2$ |
simple |
2.3.a_g |
$2$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 3 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$4$ |
$[4, 22, 28, 46, 244, 838, 2188, 6238, 19684, 60022]$ |
$16$ |
$[16, 256, 784, 4096, 59536, 614656, 4787344, 40960000, 387459856, 3544535296]$ |
$0$ |
$0$ |
$9$ |
$12$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.3.a 2 |
2.3.d_g |
$2$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 + 3 x^{2} )( 1 + 3 x + 3 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$7$ |
$[7, 13, 28, 73, 217, 838, 2107, 6481, 19684, 59293]$ |
$28$ |
$[28, 112, 784, 5824, 52948, 614656, 4610116, 42515200, 387459856, 3501133552]$ |
$1$ |
$1$ |
$9$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.3.a $\times$ 1.3.d |
2.3.g_p |
$2$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 3 x + 3 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$10$ |
$[10, 4, 28, 100, 190, 838, 2026, 6724, 19684, 58564]$ |
$49$ |
$[49, 49, 784, 8281, 47089, 614656, 4439449, 44129449, 387459856, 3458263249]$ |
$0$ |
$0$ |
$9$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.3.d 2 |
2.4.ai_y |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
|
|
|
✓ |
✓ |
|
$( 1 - 2 x )^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$-3$ |
$[-3, 1, 33, 193, 897, 3841, 15873, 64513, 260097, 1044481]$ |
$1$ |
$[1, 81, 2401, 50625, 923521, 15752961, 260144641, 4228250625, 68184176641, 1095222947841]$ |
$0$ |
$0$ |
$19$ |
$12$ |
$1$ |
\(\Q\) |
Trivial |
1.4.ae 2 |
2.4.ag_q |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x )^{2}( 1 - 2 x + 4 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$-1$ |
$[-1, 13, 65, 241, 929, 3841, 16001, 65281, 262145, 1047553]$ |
$3$ |
$[3, 189, 3969, 61425, 954273, 15752961, 262209153, 4278189825, 68718952449, 1098437884929]$ |
$0$ |
$0$ |
$19$ |
$30$ |
$6$ |
\(\Q\), \(\Q(\sqrt{-3}) \) |
Trivial, $C_2$ |
1.4.ae $\times$ 1.4.ac |
2.4.ae_i |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 - 2 x )^{2}( 1 + 4 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$1$ |
$[1, 17, 49, 193, 961, 4097, 16129, 64513, 261121, 1048577]$ |
$5$ |
$[5, 225, 3185, 50625, 985025, 16769025, 264273665, 4228250625, 68451564545, 1099509530625]$ |
$1$ |
$1$ |
$19$ |
$20$ |
$4$ |
\(\Q\), \(\Q(\sqrt{-1}) \) |
Trivial, $C_2$ |
1.4.ae $\times$ 1.4.a |
2.4.ae_m |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
|
|
|
✓ |
✓ |
✓ |
$( 1 - 2 x + 4 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$1$ |
$[1, 25, 97, 289, 961, 3841, 16129, 66049, 264193, 1050625]$ |
$9$ |
$[9, 441, 6561, 74529, 986049, 15752961, 264290049, 4328718849, 69257922561, 1101662259201]$ |
$1$ |
$1$ |
$19$ |
$30$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.4.ac 2 |
2.4.ac_a |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x )^{2}( 1 + 2 x + 4 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$3$ |
$[3, 13, 33, 241, 993, 3841, 16257, 65281, 260097, 1047553]$ |
$7$ |
$[7, 189, 2401, 61425, 1015777, 15752961, 266338177, 4278189825, 68184176641, 1098437884929]$ |
$0$ |
$0$ |
$19$ |
$30$ |
$3$ |
\(\Q\), \(\Q(\sqrt{-3}) \) |
Trivial, $C_2$ |
1.4.ae $\times$ 1.4.c |
2.4.ac_e |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 - 2 x + 4 x^{2} - 8 x^{3} + 16 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$3$ |
$[3, 21, 57, 273, 1153, 4161, 16257, 65793, 261633, 1044481]$ |
$11$ |
$[11, 341, 3641, 69905, 1185921, 17043521, 266354561, 4311810305, 68585520641, 1095222947841]$ |
$2$ |
$2$ |
$19$ |
$60$ |
$5$ |
\(\Q(\zeta_{5})\) |
$C_4$ |
simple |
2.4.ac_i |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x + 4 x^{2} )( 1 + 4 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$3$ |
$[3, 29, 81, 241, 993, 4097, 16257, 65281, 263169, 1051649]$ |
$15$ |
$[15, 525, 5265, 61425, 1017825, 16769025, 266370945, 4278189825, 68988437505, 1102737050625]$ |
$0$ |
$0$ |
$19$ |
$60$ |
$12$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.4.ac $\times$ 1.4.a |
2.4.a_ai |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x )^{2}( 1 + 2 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$5$ |
$[5, 1, 65, 193, 1025, 3841, 16385, 64513, 262145, 1044481]$ |
$9$ |
$[9, 81, 3969, 50625, 1046529, 15752961, 268402689, 4228250625, 68718952449, 1095222947841]$ |
$0$ |
$0$ |
$19$ |
$12$ |
$2$ |
\(\Q\), \(\Q\) |
Trivial, Trivial |
1.4.ae $\times$ 1.4.e |
2.4.a_ae |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
|
|
|
|
✓ |
✓ |
✓ |
$1 - 4 x^{2} + 16 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$5$ |
$[5, 9, 65, 289, 1025, 4353, 16385, 66049, 262145, 1046529]$ |
$13$ |
$[13, 169, 4225, 74529, 1047553, 17850625, 268419073, 4328718849, 68720001025, 1097367287809]$ |
$1$ |
$1$ |
$19$ |
$60$ |
$6$ |
\(\Q(\zeta_{12})\) |
$C_2^2$ |
simple |
2.4.a_a |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 16 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$5$ |
$[5, 17, 65, 321, 1025, 4097, 16385, 64513, 262145, 1048577]$ |
$17$ |
$[17, 289, 4097, 83521, 1048577, 16785409, 268435457, 4228250625, 68719476737, 1099513724929]$ |
$2$ |
$2$ |
$19$ |
$40$ |
$4$ |
\(\Q(\zeta_{8})\) |
$C_2^2$ |
simple |
2.4.a_e |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 - 2 x + 4 x^{2} )( 1 + 2 x + 4 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$5$ |
$[5, 25, 65, 289, 1025, 3841, 16385, 66049, 262145, 1050625]$ |
$21$ |
$[21, 441, 3969, 74529, 1049601, 15752961, 268451841, 4328718849, 68718952449, 1101662259201]$ |
$2$ |
$2$ |
$19$ |
$30$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.4.ac $\times$ 1.4.c |
2.4.a_i |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
|
|
|
✓ |
✓ |
✓ |
$( 1 + 4 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$5$ |
$[5, 33, 65, 193, 1025, 4353, 16385, 64513, 262145, 1052673]$ |
$25$ |
$[25, 625, 4225, 50625, 1050625, 17850625, 268468225, 4228250625, 68720001025, 1103812890625]$ |
$1$ |
$1$ |
$19$ |
$20$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
1.4.a 2 |
2.4.c_a |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 2 x )^{2}( 1 - 2 x + 4 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$7$ |
$[7, 13, 97, 241, 1057, 3841, 16513, 65281, 264193, 1047553]$ |
$27$ |
$[27, 189, 6561, 61425, 1081377, 15752961, 270532737, 4278189825, 69257922561, 1098437884929]$ |
$0$ |
$0$ |
$19$ |
$30$ |
$3$ |
\(\Q(\sqrt{-3}) \), \(\Q\) |
$C_2$, Trivial |
1.4.ac $\times$ 1.4.e |
2.4.c_e |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 2 x + 4 x^{2} + 8 x^{3} + 16 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$7$ |
$[7, 21, 73, 273, 897, 4161, 16513, 65793, 262657, 1044481]$ |
$31$ |
$[31, 341, 4681, 69905, 923521, 17043521, 270549121, 4311810305, 68853957121, 1095222947841]$ |
$2$ |
$2$ |
$19$ |
$60$ |
$5$ |
\(\Q(\zeta_{5})\) |
$C_4$ |
simple |
2.4.c_i |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 4 x^{2} )( 1 + 2 x + 4 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$7$ |
$[7, 29, 49, 241, 1057, 4097, 16513, 65281, 261121, 1051649]$ |
$35$ |
$[35, 525, 3185, 61425, 1083425, 16769025, 270565505, 4278189825, 68451564545, 1102737050625]$ |
$0$ |
$0$ |
$19$ |
$60$ |
$12$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.4.a $\times$ 1.4.c |
2.4.e_i |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
|
|
|
✓ |
✓ |
✓ |
$( 1 + 2 x )^{2}( 1 + 4 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$9$ |
$[9, 17, 81, 193, 1089, 4097, 16641, 64513, 263169, 1048577]$ |
$45$ |
$[45, 225, 5265, 50625, 1116225, 16769025, 272662785, 4228250625, 68988437505, 1099509530625]$ |
$1$ |
$1$ |
$19$ |
$20$ |
$4$ |
\(\Q(\sqrt{-1}) \), \(\Q\) |
$C_2$, Trivial |
1.4.a $\times$ 1.4.e |
2.4.e_m |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
|
|
|
✓ |
✓ |
✓ |
$( 1 + 2 x + 4 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$9$ |
$[9, 25, 33, 289, 1089, 3841, 16641, 66049, 260097, 1050625]$ |
$49$ |
$[49, 441, 2401, 74529, 1117249, 15752961, 272679169, 4328718849, 68184176641, 1101662259201]$ |
$1$ |
$1$ |
$19$ |
$30$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.4.c 2 |
2.4.g_q |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 2 x )^{2}( 1 + 2 x + 4 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$11$ |
$[11, 13, 65, 241, 1121, 3841, 16769, 65281, 262145, 1047553]$ |
$63$ |
$[63, 189, 3969, 61425, 1151073, 15752961, 274792833, 4278189825, 68718952449, 1098437884929]$ |
$0$ |
$0$ |
$19$ |
$30$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q\) |
$C_2$, Trivial |
1.4.c $\times$ 1.4.e |
2.4.i_y |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
|
|
|
✓ |
✓ |
|
$( 1 + 2 x )^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$13$ |
$[13, 1, 97, 193, 1153, 3841, 16897, 64513, 264193, 1044481]$ |
$81$ |
$[81, 81, 6561, 50625, 1185921, 15752961, 276922881, 4228250625, 69257922561, 1095222947841]$ |
$0$ |
$0$ |
$19$ |
$12$ |
$1$ |
\(\Q\) |
Trivial |
1.4.e 2 |
2.5.af_p |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 - 5 x + 15 x^{2} - 25 x^{3} + 25 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$1$ |
$[1, 31, 151, 651, 3126, 15751, 78751, 391251, 1950001, 9753126]$ |
$11$ |
$[11, 781, 19151, 406901, 9759376, 246109501, 6152578751, 152832422501, 3808599606251, 95245419909376]$ |
$2$ |
$2$ |
$7$ |
$60$ |
$10$ |
\(\Q(\zeta_{5})\) |
$C_4$ |
simple |
2.5.a_ak |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 - 5 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$6$ |
$[6, 6, 126, 526, 3126, 15126, 78126, 388126, 1953126, 9753126]$ |
$16$ |
$[16, 256, 15376, 331776, 9759376, 236421376, 6103359376, 151613669376, 3814693359376, 95245419909376]$ |
$1$ |
$1$ |
$7$ |
$12$ |
$2$ |
\(\Q(\sqrt{5}) \) |
$C_2$ |
simple |
2.5.a_af |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 - 5 x^{2} + 25 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$6$ |
$[6, 16, 126, 676, 3126, 16126, 78126, 391876, 1953126, 9759376]$ |
$21$ |
$[21, 441, 15876, 423801, 9762501, 252047376, 6103437501, 153077345001, 3814701171876, 95306425775001]$ |
$1$ |
$1$ |
$7$ |
$60$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{-5})\) |
$C_2^2$ |
simple |
2.5.a_a |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 25 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$6$ |
$[6, 26, 126, 726, 3126, 15626, 78126, 388126, 1953126, 9765626]$ |
$26$ |
$[26, 676, 15626, 456976, 9765626, 244171876, 6103515626, 151613669376, 3814697265626, 95367451171876]$ |
$3$ |
$3$ |
$7$ |
$40$ |
$4$ |
\(\Q(i, \sqrt{10})\) |
$C_2^2$ |
simple |
2.5.a_f |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 5 x^{2} + 25 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$6$ |
$[6, 36, 126, 676, 3126, 15126, 78126, 391876, 1953126, 9771876]$ |
$31$ |
$[31, 961, 15376, 423801, 9768751, 236421376, 6103593751, 153077345001, 3814693359376, 95428496100001]$ |
$5$ |
$5$ |
$7$ |
$30$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{5})\) |
$C_2^2$ |
simple |
2.5.a_k |
$2$ |
$\F_{5}$ |
$5$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 + 5 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$6$ |
$[6, 46, 126, 526, 3126, 16126, 78126, 388126, 1953126, 9778126]$ |
$36$ |
$[36, 1296, 15876, 331776, 9771876, 252047376, 6103671876, 151613669376, 3814701171876, 95489560559376]$ |
$2$ |
$2$ |
$7$ |
$20$ |
$2$ |
\(\Q(\sqrt{-5}) \) |
$C_2$ |
1.5.a 2 |
2.5.f_p |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 5 x + 15 x^{2} + 25 x^{3} + 25 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$11$ |
$[11, 31, 101, 651, 3126, 15751, 77501, 391251, 1956251, 9753126]$ |
$71$ |
$[71, 781, 12851, 406901, 9759376, 246109501, 6054921251, 152832422501, 3820806643751, 95245419909376]$ |
$2$ |
$2$ |
$7$ |
$60$ |
$10$ |
\(\Q(\zeta_{5})\) |
$C_4$ |
simple |
2.7.a_ao |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 - 7 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$8$ |
$[8, 22, 344, 2206, 16808, 116278, 823544, 5755198, 40353608, 282408022]$ |
$36$ |
$[36, 1296, 116964, 5308416, 282441636, 13680577296, 678221425764, 33177600000000, 1628413517203236, 79773277746356496]$ |
$1$ |
$1$ |
$5$ |
$12$ |
$2$ |
\(\Q(\sqrt{7}) \) |
$C_2$ |
simple |
2.7.a_ah |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
|
✓ |
|
|
✓ |
|
|
$1 - 7 x^{2} + 49 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$8$ |
$[8, 36, 344, 2500, 16808, 119022, 823544, 5769604, 40353608, 282441636]$ |
$43$ |
$[43, 1849, 118336, 6007401, 282458443, 14003408896, 678222249307, 33260630443209, 1628413678617664, 79782772021984249]$ |
$0$ |
$0$ |
$5$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{-7})\) |
$C_2^2$ |
simple |
2.7.a_a |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 49 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$8$ |
$[8, 50, 344, 2598, 16808, 117650, 823544, 5755198, 40353608, 282475250]$ |
$50$ |
$[50, 2500, 117650, 6250000, 282475250, 13841522500, 678223072850, 33177600000000, 1628413597910450, 79792266862562500]$ |
$9$ |
$9$ |
$5$ |
$24$ |
$4$ |
\(\Q(i, \sqrt{14})\) |
$C_2^2$ |
simple |
2.7.a_h |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 7 x^{2} + 49 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$8$ |
$[8, 64, 344, 2500, 16808, 116278, 823544, 5769604, 40353608, 282508864]$ |
$57$ |
$[57, 3249, 116964, 6007401, 282492057, 13680577296, 678223896393, 33260630443209, 1628413517203236, 79801762268091249]$ |
$6$ |
$6$ |
$5$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{7})\) |
$C_2^2$ |
simple |