Properties

Label 2.5.a_af
Base field $\F_{5}$
Dimension $2$
$p$-rank $0$
Ordinary no
Supersingular yes
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{5}$
Dimension:  $2$
L-polynomial:  $1 - 5 x^{2} + 25 x^{4}$
Frobenius angles:  $\pm0.166666666667$, $\pm0.833333333333$
Angle rank:  $0$ (numerical)
Number field:  \(\Q(\sqrt{-3}, \sqrt{-5})\)
Galois group:  $C_2^2$
Jacobians:  $1$
Isomorphism classes:  6

This isogeny class is simple but not geometrically simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2, 1/2, 1/2]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $21$ $441$ $15876$ $423801$ $9762501$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $6$ $16$ $126$ $676$ $3126$ $16126$ $78126$ $391876$ $1953126$ $9759376$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{5^{6}}$.

Endomorphism algebra over $\F_{5}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-5})\).
Endomorphism algebra over $\overline{\F}_{5}$
The base change of $A$ to $\F_{5^{6}}$ is 1.15625.jq 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $5$ and $\infty$.
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.5.a_k$3$2.125.a_jq
2.5.a_f$4$2.625.by_cud
2.5.a_ak$12$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.5.a_k$3$2.125.a_jq
2.5.a_f$4$2.625.by_cud
2.5.a_ak$12$(not in LMFDB)
2.5.a_f$12$(not in LMFDB)
2.5.a_a$24$(not in LMFDB)
2.5.af_p$60$(not in LMFDB)
2.5.f_p$60$(not in LMFDB)