Properties

Label 1.4.c
Base field $\F_{2^{2}}$
Dimension $1$
$p$-rank $0$
Ordinary no
Supersingular yes
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{2^{2}}$
Dimension:  $1$
L-polynomial:  $1 + 2 x + 4 x^{2}$
Frobenius angles:  $\pm0.666666666667$
Angle rank:  $0$ (numerical)
Number field:  \(\Q(\sqrt{-3}) \)
Galois group:  $C_2$
Jacobians:  $2$

This isogeny class is simple and geometrically simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $7$ $21$ $49$ $273$ $1057$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $7$ $21$ $49$ $273$ $1057$ $3969$ $16513$ $65793$ $261121$ $1049601$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{6}}$.

Endomorphism algebra over $\F_{2^{2}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \).
Endomorphism algebra over $\overline{\F}_{2^{2}}$
The base change of $A$ to $\F_{2^{6}}$ is the simple isogeny class 1.64.aq and its endomorphism algebra is the quaternion algebra over \(\Q\) ramified at $2$ and $\infty$.

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
1.4.ac$2$1.16.e
1.4.ae$3$1.64.aq
1.4.e$6$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.4.ac$2$1.16.e
1.4.ae$3$1.64.aq
1.4.e$6$(not in LMFDB)
1.4.a$12$(not in LMFDB)