Properties

Label 2.4.6.2
Base \(\Q_{2}\)
Degree \(4\)
e \(2\)
f \(2\)
c \(6\)
Galois group $C_2^2$ (as 4T2)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $4$
Ramification exponent $e$: $2$
Residue field degree $f$: $2$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\card{ \Gal(K/\Q_{ 2 }) }$: $4$
This field is Galois and abelian over $\Q_{2}.$
Visible slopes:$[3]$

Intermediate fields

$\Q_{2}(\sqrt{5})$, $\Q_{2}(\sqrt{-2})$, $\Q_{2}(\sqrt{-2\cdot 5})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + \left(4 t + 4\right) x + 4 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Data not computed

Invariants of the Galois closure

Galois group: $C_2^2$ (as 4T2)
Inertia group: Intransitive group isomorphic to $C_2$
Wild inertia group: $C_2$
Unramified degree: $2$
Tame degree: $1$
Wild slopes: $[3]$
Galois mean slope: $3/2$
Galois splitting model:$x^{4} - 2 x^{2} + 4$