Show commands:
Magma
magma: G := TransitiveGroup(4, 2);
Group action invariants
Degree $n$: | $4$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $2$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_2^2$ | ||
CHM label: | $E(4) = 2[x]2$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2)(3,4), (1,4)(2,3) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{4}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{2}$ | $1$ | $2$ | $2$ | $(1,2)(3,4)$ |
2B | $2^{2}$ | $1$ | $2$ | $2$ | $(1,4)(2,3)$ |
2C | $2^{2}$ | $1$ | $2$ | $2$ | $(1,3)(2,4)$ |
Malle's constant $a(G)$: $1/2$
magma: ConjugacyClasses(G);
Group invariants
Order: | $4=2^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | yes | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $1$ | ||
Label: | 4.2 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | ||
Size | 1 | 1 | 1 | 1 | |
2 P | 1A | 1A | 1A | 1A | |
Type | |||||
4.2.1a | R | ||||
4.2.1b | R | ||||
4.2.1c | R | ||||
4.2.1d | R |
magma: CharacterTable(G);
Indecomposable integral representations
Partial
list of indecomposable integral representations:
|
Additional information
This is the smallest transitive permutation group on $n$ elements which does not contain an $n$-cycle.