Defining polynomial
\(x^{6} - 8 x^{5} + 86 x^{4} + 96 x^{3} + 860 x^{2} + 2976 x + 2728\) |
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $6$ |
Ramification exponent $e$: | $2$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $9$ |
Discriminant root field: | $\Q_{2}(\sqrt{-2})$ |
Root number: | $i$ |
$\card{ \Aut(K/\Q_{ 2 }) }$: | $2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible slopes: | $[3]$ |
Intermediate fields
2.3.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} + x + 1 \) |
Relative Eisenstein polynomial: | \( x^{2} + \left(4 t^{2} + 4 t\right) x + 12 t^{2} + 4 t + 10 \) $\ \in\Q_{2}(t)[x]$ |
Ramification polygon
Data not computedInvariants of the Galois closure
Galois group: | $C_2\times A_4$ (as 6T6) |
Inertia group: | Intransitive group isomorphic to $C_2^3$ |
Wild inertia group: | $C_2^3$ |
Unramified degree: | $3$ |
Tame degree: | $1$ |
Wild slopes: | $[2, 2, 3]$ |
Galois mean slope: | $9/4$ |
Galois splitting model: | $x^{6} - 12 x^{2} + 8$ |