Properties

Label 2.4.8.8
Base \(\Q_{2}\)
Degree \(4\)
e \(4\)
f \(1\)
c \(8\)
Galois group $S_4$ (as 4T5)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{4} + 4 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $4$
Ramification exponent $e$: $4$
Residue field degree $f$: $1$
Discriminant exponent $c$: $8$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $1$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[8/3, 8/3]$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 2 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{4} + 4 x + 2 \) Copy content Toggle raw display

Ramification polygon

Data not computed

Invariants of the Galois closure

Galois group: $S_4$ (as 4T5)
Inertia group: $A_4$ (as 4T4)
Wild inertia group: $C_2^2$
Unramified degree: $2$
Tame degree: $3$
Wild slopes: $[8/3, 8/3]$
Galois mean slope: $13/6$
Galois splitting model: $x^{4} + 4 x + 2$ Copy content Toggle raw display