Properties

Label 2.4.6.5
Base \(\Q_{2}\)
Degree \(4\)
e \(2\)
f \(2\)
c \(6\)
Galois group $D_{4}$ (as 4T3)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{4} - 4 x^{3} + 36 x^{2} + 8 x + 148\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $4$
Ramification exponent $e$: $2$
Residue field degree $f$: $2$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $i$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[3]$

Intermediate fields

$\Q_{2}(\sqrt{5})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 4 t x + 8 t + 14 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Data not computed

Invariants of the Galois closure

Galois group: $D_4$ (as 4T3)
Inertia group: Intransitive group isomorphic to $C_2^2$
Wild inertia group: $C_2^2$
Unramified degree: $2$
Tame degree: $1$
Wild slopes: $[2, 3]$
Galois mean slope: $2$
Galois splitting model: $x^{4} + 2 x^{2} - 4$ Copy content Toggle raw display