Properties

Label 13.10.5.1
Base \(\Q_{13}\)
Degree \(10\)
e \(2\)
f \(5\)
c \(5\)
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{10} + 650 x^{9} + 169065 x^{8} + 22003800 x^{7} + 1434642698 x^{6} + 37701182242 x^{5} + 18651037600 x^{4} + 3808243140 x^{3} + 6315953361 x^{2} + 164195122608 x + 421659070668\) Copy content Toggle raw display

Invariants

Base field: $\Q_{13}$
Degree $d$: $10$
Ramification exponent $e$: $2$
Residue field degree $f$: $5$
Discriminant exponent $c$: $5$
Discriminant root field: $\Q_{13}(\sqrt{13})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 13 }) }$: $10$
This field is Galois and abelian over $\Q_{13}.$
Visible slopes:None

Intermediate fields

$\Q_{13}(\sqrt{13})$, 13.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:13.5.0.1 $\cong \Q_{13}(t)$ where $t$ is a root of \( x^{5} + 4 x + 11 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 130 x + 13 \) $\ \in\Q_{13}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Data not computed

Invariants of the Galois closure

Galois group: $C_{10}$ (as 10T1)
Inertia group: Intransitive group isomorphic to $C_2$
Wild inertia group: $C_1$
Unramified degree: $5$
Tame degree: $2$
Wild slopes: None
Galois mean slope: $1/2$
Galois splitting model:$x^{10} - 3 x^{9} - 21 x^{8} + 56 x^{7} + 130 x^{6} - 304 x^{5} - 204 x^{4} + 471 x^{3} - 61 x^{2} - 89 x + 23$