Defining polynomial
\(x^{10} + 650 x^{9} + 169065 x^{8} + 22003800 x^{7} + 1434642698 x^{6} + 37701182242 x^{5} + 18651037600 x^{4} + 3808243140 x^{3} + 6315953361 x^{2} + 164195122608 x + 421659070668\) |
Invariants
Base field: | $\Q_{13}$ |
Degree $d$: | $10$ |
Ramification exponent $e$: | $2$ |
Residue field degree $f$: | $5$ |
Discriminant exponent $c$: | $5$ |
Discriminant root field: | $\Q_{13}(\sqrt{13})$ |
Root number: | $1$ |
$\card{ \Gal(K/\Q_{ 13 }) }$: | $10$ |
This field is Galois and abelian over $\Q_{13}.$ | |
Visible slopes: | None |
Intermediate fields
$\Q_{13}(\sqrt{13})$, 13.5.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 13.5.0.1 $\cong \Q_{13}(t)$ where $t$ is a root of \( x^{5} + 4 x + 11 \) |
Relative Eisenstein polynomial: | \( x^{2} + 130 x + 13 \) $\ \in\Q_{13}(t)[x]$ |
Ramification polygon
Data not computedInvariants of the Galois closure
Galois group: | $C_{10}$ (as 10T1) |
Inertia group: | Intransitive group isomorphic to $C_2$ |
Wild inertia group: | $C_1$ |
Unramified degree: | $5$ |
Tame degree: | $2$ |
Wild slopes: | None |
Galois mean slope: | $1/2$ |
Galois splitting model: | $x^{10} - 3 x^{9} - 21 x^{8} + 56 x^{7} + 130 x^{6} - 304 x^{5} - 204 x^{4} + 471 x^{3} - 61 x^{2} - 89 x + 23$ |