The term modular form is used to describe several types of complex functions which have a certain type of functional equation and growth condition. Examples include:
- classical modular forms
- Maass waveforms
- Hilbert modular forms
- Bianchi modular forms
- Siegel modular forms
Modular forms of the same weight and multiplier system that are defined over the same group form a $\mathbb{C}$-vector space.
Knowl status:
- Review status: reviewed
- Last edited by Holly Swisher on 2019-04-29 14:48:00
Referred to by:
History:
(expand/hide all)
- hecke_algebra.definition
- mf.base_change
- mf.bianchi.2.0.4.1-16384.1-d.top
- mf.cm
- mf.gl2.history
- mf.gl2.history.combinatorics
- mf.gl2.history.hecke
- mf.gl2.history.infinite
- mf.gl2.history.new
- mf.gl2.history.poincare
- mf.gl2.history.remainder
- mf.gl2.history.theta
- mf.gl2.history.varieties
- mf.growth_condition
- mf.slash_action
- mf.transformation_property
- lmfdb/half_integral_weight_forms/half_integral_form.py (line 116)
- lmfdb/knowledge/knowl.py (line 221)
- 2024-07-09 09:56:18 by John Cremona
- 2019-04-29 14:48:00 by Holly Swisher (Reviewed)
- 2019-03-21 13:52:11 by John Voight
- 2016-04-01 14:16:58 by Andreea Mocanu