The analytic conductor of a newform $f \in S_k^{\mathrm{new}}(N,\chi)$ is the positive real number \[ N\left(\frac{\exp(\psi(k/2))}{2\pi}\right)^2, \] where $\psi(x):=\Gamma'(x)/\Gamma(x)$ is the logarithmic derivative of the Gamma function.
Knowl status:
- Review status: reviewed
- Last edited by David Farmer on 2019-04-11 23:02:18
Referred to by:
History:
(expand/hide all)
Differences
(show/hide)
- cmf.23.2.a.a.top
- cmf.7.3.b.a.top
- cmf.nk2
- columns.mf_gamma1.analytic_conductor
- rcs.cande.cmf
- lmfdb/classical_modular_forms/main.py (line 846)
- lmfdb/classical_modular_forms/main.py (line 1183)
- lmfdb/classical_modular_forms/main.py (line 1568)
- lmfdb/classical_modular_forms/templates/cmf_newform_common.html (line 45)
- lmfdb/lfunctions/templates/cuspformGL2.html (line 19)