Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
1.5.ae |
$1$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 5 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$2$ |
$[2, 20, 122, 640, 3202, 15860, 78682, 391680, 1954562, 9766100]$ |
$2$ |
$[2, 20, 122, 640, 3202, 15860, 78682, 391680, 1954562, 9766100]$ |
$1$ |
$1$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.5.ad |
$1$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 5 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$3$ |
$[3, 27, 144, 675, 3183, 15552, 77619, 389475, 1952208, 9768627]$ |
$3$ |
$[3, 27, 144, 675, 3183, 15552, 77619, 389475, 1952208, 9768627]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
1.5.ac |
$1$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 5 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$4$ |
$[4, 32, 148, 640, 3044, 15392, 78068, 391680, 1955524, 9765152]$ |
$4$ |
$[4, 32, 148, 640, 3044, 15392, 78068, 391680, 1955524, 9765152]$ |
$2$ |
$2$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.5.ab |
$1$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 5 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$5$ |
$[5, 35, 140, 595, 3025, 15680, 78685, 390915, 1950620, 9761675]$ |
$5$ |
$[5, 35, 140, 595, 3025, 15680, 78685, 390915, 1950620, 9761675]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
1.5.a |
$1$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 5 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$6$ |
$[6, 36, 126, 576, 3126, 15876, 78126, 389376, 1953126, 9771876]$ |
$6$ |
$[6, 36, 126, 576, 3126, 15876, 78126, 389376, 1953126, 9771876]$ |
$2$ |
$2$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-5}) \) |
$C_2$ |
simple |
1.5.b |
$1$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 5 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$7$ |
$[7, 35, 112, 595, 3227, 15680, 77567, 390915, 1955632, 9761675]$ |
$7$ |
$[7, 35, 112, 595, 3227, 15680, 77567, 390915, 1955632, 9761675]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
1.5.c |
$1$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 5 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$8$ |
$[8, 32, 104, 640, 3208, 15392, 78184, 391680, 1950728, 9765152]$ |
$8$ |
$[8, 32, 104, 640, 3208, 15392, 78184, 391680, 1950728, 9765152]$ |
$2$ |
$2$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.5.d |
$1$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 5 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$9$ |
$[9, 27, 108, 675, 3069, 15552, 78633, 389475, 1954044, 9768627]$ |
$9$ |
$[9, 27, 108, 675, 3069, 15552, 78633, 389475, 1954044, 9768627]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
1.5.e |
$1$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 5 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$10$ |
$[10, 20, 130, 640, 3050, 15860, 77570, 391680, 1951690, 9766100]$ |
$10$ |
$[10, 20, 130, 640, 3050, 15860, 77570, 391680, 1951690, 9766100]$ |
$1$ |
$1$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
2.5.ai_ba |
$2$ |
$\F_{5}$ |
$5$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 4 x + 5 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$-2$ |
$[-2, 14, 118, 654, 3278, 16094, 79238, 392734, 1955998, 9766574]$ |
$4$ |
$[4, 400, 14884, 409600, 10252804, 251539600, 6190857124, 153413222400, 3820312611844, 95376709210000]$ |
$0$ |
$0$ |
$16$ |
$12$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
1.5.ae 2 |
2.5.ah_w |
$2$ |
$\F_{5}$ |
$5$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 4 x + 5 x^{2} )( 1 - 3 x + 5 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$-1$ |
$[-1, 21, 140, 689, 3259, 15786, 78175, 390529, 1953644, 9769101]$ |
$6$ |
$[6, 540, 17568, 432000, 10191966, 246654720, 6107218158, 152549568000, 3815711572896, 95401388144700]$ |
$0$ |
$0$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-11}) \) |
$C_2$, $C_2$ |
1.5.ae $\times$ 1.5.ad |
2.5.ag_r |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 17 x^{2} - 30 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$0$ |
$[0, 24, 126, 580, 2940, 15342, 78204, 391492, 1953126, 9760344]$ |
$7$ |
$[7, 553, 15484, 363321, 9198847, 239754256, 6109689607, 152926532073, 3814701058588, 95315867737993]$ |
$1$ |
$1$ |
$6$ |
$24$ |
$6$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
$C_2^2$ |
simple |
2.5.ag_s |
$2$ |
$\F_{5}$ |
$5$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 4 x + 5 x^{2} )( 1 - 2 x + 5 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$0$ |
$[0, 26, 144, 654, 3120, 15626, 78624, 392734, 1956960, 9765626]$ |
$8$ |
$[8, 640, 18056, 409600, 9746888, 244117120, 6142546376, 153413222400, 3822192900488, 95367450947200]$ |
$1$ |
$1$ |
$16$ |
$12$ |
$4$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.5.ae $\times$ 1.5.ac |
2.5.ag_t |
$2$ |
$\F_{5}$ |
$5$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 3 x + 5 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$0$ |
$[0, 28, 162, 724, 3240, 15478, 77112, 388324, 1951290, 9771628]$ |
$9$ |
$[9, 729, 20736, 455625, 10131489, 241864704, 6024709161, 151690775625, 3811116075264, 95426073465129]$ |
$1$ |
$1$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
1.5.ad 2 |
2.5.af_n |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 13 x^{2} - 25 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$1$ |
$[1, 27, 121, 563, 3026, 15795, 78821, 390979, 1952581, 9771462]$ |
$9$ |
$[9, 621, 15093, 353349, 9460944, 246815829, 6158067813, 152726271525, 3813630612129, 95424443559936]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.4901.1 |
$D_{4}$ |
simple |
2.5.af_o |
$2$ |
$\F_{5}$ |
$5$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 4 x + 5 x^{2} )( 1 - x + 5 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$1$ |
$[1, 29, 136, 609, 3101, 15914, 79241, 391969, 1952056, 9762149]$ |
$10$ |
$[10, 700, 17080, 380800, 9686050, 248684800, 6191093170, 153113587200, 3812607728440, 95333494217500]$ |
$1$ |
$1$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-19}) \) |
$C_2$, $C_2$ |
1.5.ae $\times$ 1.5.ab |
2.5.af_p |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 - 5 x + 15 x^{2} - 25 x^{3} + 25 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$1$ |
$[1, 31, 151, 651, 3126, 15751, 78751, 391251, 1950001, 9753126]$ |
$11$ |
$[11, 781, 19151, 406901, 9759376, 246109501, 6152578751, 152832422501, 3808599606251, 95245419909376]$ |
$2$ |
$2$ |
$7$ |
$60$ |
$10$ |
\(\Q(\zeta_{5})\) |
$C_4$ |
simple |
2.5.af_q |
$2$ |
$\F_{5}$ |
$5$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 3 x + 5 x^{2} )( 1 - 2 x + 5 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$1$ |
$[1, 33, 166, 689, 3101, 15318, 77561, 390529, 1954606, 9768153]$ |
$12$ |
$[12, 864, 21312, 432000, 9689052, 239376384, 6059560092, 152549568000, 3817589596992, 95392127486304]$ |
$0$ |
$0$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.5.ad $\times$ 1.5.ac |
2.5.ae_i |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 8 x^{2} - 20 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 26, 98, 534, 3082, 15626, 77338, 388894, 1953602, 9765626]$ |
$10$ |
$[10, 580, 12490, 336400, 9629050, 244129540, 6042262810, 151912857600, 3815627066890, 95367440008900]$ |
$1$ |
$1$ |
$6$ |
$24$ |
$4$ |
\(\Q(i, \sqrt{6})\) |
$C_2^2$ |
simple |
2.5.ae_j |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 9 x^{2} - 20 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$[2, 28, 110, 564, 3162, 15958, 78290, 390564, 1957142, 9777228]$ |
$11$ |
$[11, 649, 13904, 353705, 9884611, 249382144, 6116410619, 152563223945, 3822548426576, 95480785454329]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.1025.1 |
$D_{4}$ |
simple |
2.5.ae_k |
$2$ |
$\F_{5}$ |
$5$ |
|
|
✓ |
|
✓ |
|
✓ |
✓ |
$( 1 - 4 x + 5 x^{2} )( 1 + 5 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$2$ |
$[2, 30, 122, 590, 3202, 16110, 78682, 390430, 1954562, 9772350]$ |
$12$ |
$[12, 720, 15372, 368640, 10009452, 251793360, 6147109932, 152510791680, 3817505860812, 95433118203600]$ |
$4$ |
$4$ |
$4$ |
$4$ |
$2$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-5}) \) |
$C_2$, $C_2$ |
1.5.ae $\times$ 1.5.a |
2.5.ae_l |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 11 x^{2} - 20 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 32, 134, 612, 3202, 16094, 78682, 389572, 1950254, 9765152]$ |
$13$ |
$[13, 793, 16900, 381433, 10005853, 251539600, 6147184693, 152176891113, 3809093856100, 95362793192953]$ |
$2$ |
$2$ |
$16$ |
$24$ |
$3$ |
\(\Q(\zeta_{12})\) |
$C_2^2$ |
simple |
2.5.ae_m |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 12 x^{2} - 20 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$[2, 34, 146, 630, 3162, 15922, 78458, 389022, 1947746, 9762594]$ |
$14$ |
$[14, 868, 18494, 392336, 9877294, 248818276, 6129559646, 151962718208, 3804200579438, 95337834447268]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.10496.2 |
$D_{4}$ |
simple |
2.5.ae_n |
$2$ |
$\F_{5}$ |
$5$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 3 x + 5 x^{2} )( 1 - x + 5 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$[2, 36, 158, 644, 3082, 15606, 78178, 389764, 1949702, 9764676]$ |
$15$ |
$[15, 945, 20160, 401625, 9628575, 243855360, 6107451015, 152251619625, 3808015968960, 95358161970225]$ |
$3$ |
$3$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-19}) \) |
$C_2$, $C_2$ |
1.5.ad $\times$ 1.5.ab |
2.5.ae_o |
$2$ |
$\F_{5}$ |
$5$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 2 x + 5 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 38, 170, 654, 2962, 15158, 78010, 392734, 1957922, 9764678]$ |
$16$ |
$[16, 1024, 21904, 409600, 9265936, 236913664, 6094612624, 153413222400, 3824074114576, 95358193583104]$ |
$1$ |
$1$ |
$16$ |
$12$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
1.5.ac 2 |
2.5.ad_e |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 4 x^{2} - 15 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$3$ |
$[3, 25, 90, 577, 3183, 15478, 77619, 391777, 1954962, 9762625]$ |
$12$ |
$[12, 576, 11664, 361728, 9943932, 241864704, 6064084668, 153038435328, 3818287953936, 95338124237376]$ |
$3$ |
$3$ |
$6$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}, \sqrt{-11})\) |
$C_2^2$ |
simple |
2.5.ad_f |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
|
✓ |
|
✓ |
✓ |
$1 - 3 x + 5 x^{2} - 15 x^{3} + 25 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$3$ |
$[3, 27, 99, 595, 3258, 15747, 78039, 392515, 1957743, 9765702]$ |
$13$ |
$[13, 637, 12649, 372645, 10187008, 246060997, 6096639289, 153327393765, 3823723851493, 95368161021952]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.37845.1 |
$D_{4}$ |
simple |
2.5.ad_g |
$2$ |
$\F_{5}$ |
$5$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 4 x + 5 x^{2} )( 1 + x + 5 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 29, 108, 609, 3303, 15914, 78123, 391969, 1957068, 9762149]$ |
$14$ |
$[14, 700, 13664, 380800, 10332854, 248684800, 6103126694, 153113587200, 3822403993184, 95333494217500]$ |
$1$ |
$1$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-19}) \) |
$C_2$, $C_2$ |
1.5.ae $\times$ 1.5.b |
2.5.ad_h |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 7 x^{2} - 15 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 31, 117, 619, 3318, 15991, 77997, 390739, 1955043, 9759526]$ |
$15$ |
$[15, 765, 14715, 386325, 10381200, 249904845, 6093381435, 152632757925, 3818442864735, 95307887059200]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.48069.2 |
$D_{4}$ |
simple |
2.5.ad_i |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 8 x^{2} - 15 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$3$ |
$[3, 33, 126, 625, 3303, 15990, 77787, 389377, 1953126, 9761433]$ |
$16$ |
$[16, 832, 15808, 389376, 10332496, 249892864, 6077147344, 152101168128, 3814694762944, 95326492186432]$ |
$4$ |
$4$ |
$4$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{17})\) |
$C_2^2$ |
simple |
2.5.ad_j |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 9 x^{2} - 15 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 35, 135, 627, 3258, 15923, 77619, 388387, 1952127, 9767750]$ |
$17$ |
$[17, 901, 16949, 390133, 10188032, 248828269, 6064126253, 151715311173, 3812745837521, 95388179992576]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.30589.1 |
$D_{4}$ |
simple |
2.5.ad_k |
$2$ |
$\F_{5}$ |
$5$ |
|
|
✓ |
|
✓ |
|
✓ |
✓ |
$( 1 - 3 x + 5 x^{2} )( 1 + 5 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$3$ |
$[3, 37, 144, 625, 3183, 15802, 77619, 388225, 1952208, 9774877]$ |
$18$ |
$[18, 972, 18144, 388800, 9950058, 246903552, 6064061994, 151652217600, 3812908202208, 95457811734252]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$2$ |
\(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-5}) \) |
$C_2$, $C_2$ |
1.5.ad $\times$ 1.5.a |
2.5.ad_l |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 11 x^{2} - 15 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 39, 153, 619, 3078, 15639, 77913, 389299, 1952883, 9775974]$ |
$19$ |
$[19, 1045, 19399, 385605, 9621904, 244330405, 6086864719, 152070658245, 3814223251819, 95468531488000]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.6525.1 |
$D_{4}$ |
simple |
2.5.ad_m |
$2$ |
$\F_{5}$ |
$5$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 2 x + 5 x^{2} )( 1 - x + 5 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 41, 162, 609, 2943, 15446, 78627, 391969, 1953018, 9761201]$ |
$20$ |
$[20, 1120, 20720, 380800, 9208100, 241346560, 6142780580, 153113587200, 3814484224880, 95324240149600]$ |
$0$ |
$0$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-19}) \) |
$C_2$, $C_2$ |
1.5.ac $\times$ 1.5.ab |
2.5.ac_ab |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
✓ |
|
|
|
|
$1 - 2 x - x^{2} - 10 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 20, 82, 612, 3044, 15158, 78068, 389572, 1948330, 9766100]$ |
$13$ |
$[13, 481, 10816, 381433, 9512893, 236913664, 6098909557, 152176891113, 3805339729984, 95372051006401]$ |
$0$ |
$0$ |
$16$ |
$24$ |
$3$ |
\(\Q(\zeta_{12})\) |
$C_2^2$ |
simple |
2.5.ac_a |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
|
✓ |
|
✓ |
✓ |
$1 - 2 x - 10 x^{3} + 25 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$4$ |
$[4, 22, 88, 630, 3144, 15382, 78628, 391710, 1952404, 9775302]$ |
$14$ |
$[14, 532, 11438, 393680, 9826894, 240358132, 6142944878, 153012392960, 3813285458654, 95461966344052]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.38720.3 |
$D_{4}$ |
simple |
2.5.ac_b |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + x^{2} - 10 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 24, 94, 644, 3224, 15534, 78824, 392644, 1953094, 9772824]$ |
$15$ |
$[15, 585, 12060, 403065, 10080375, 242695440, 6158307135, 153377921385, 3814631172540, 95437754699625]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.65600.5 |
$D_{4}$ |
simple |
2.5.ac_c |
$2$ |
$\F_{5}$ |
$5$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 4 x + 5 x^{2} )( 1 + 2 x + 5 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 26, 100, 654, 3284, 15626, 78740, 392734, 1952164, 9765626]$ |
$16$ |
$[16, 640, 12688, 409600, 10272016, 244117120, 6151673488, 153413222400, 3812818821136, 95367450947200]$ |
$5$ |
$5$ |
$16$ |
$12$ |
$4$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.5.ae $\times$ 1.5.c |
2.5.ac_d |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 3 x^{2} - 10 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 28, 106, 660, 3324, 15670, 78460, 392292, 1950946, 9758508]$ |
$17$ |
$[17, 697, 13328, 413321, 10400617, 244808704, 6129718577, 153240000713, 3810444185744, 95297951798857]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.5696.1 |
$D_{4}$ |
simple |
2.5.ac_e |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 4 x^{2} - 10 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 30, 112, 662, 3344, 15678, 78068, 391582, 1950340, 9754350]$ |
$18$ |
$[18, 756, 13986, 414288, 10465218, 244950804, 6099083442, 152961758208, 3809261211714, 95257365427476]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.90944.1 |
$D_{4}$ |
simple |
2.5.ac_f |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
|
✓ |
|
✓ |
✓ |
$1 - 2 x + 5 x^{2} - 10 x^{3} + 25 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$4$ |
$[4, 32, 118, 660, 3344, 15662, 77648, 390820, 1950814, 9754352]$ |
$19$ |
$[19, 817, 14668, 412585, 10465219, 244720912, 6066354523, 152663463945, 3810184219564, 95257384994977]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.83520.4 |
$D_{4}$ |
simple |
2.5.ac_g |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 6 x^{2} - 10 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 34, 124, 654, 3324, 15634, 77284, 390174, 1952404, 9758274]$ |
$20$ |
$[20, 880, 15380, 408320, 10400500, 244295920, 6038057780, 152411156480, 3813287193620, 95295662902000]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.4400.1 |
$D_{4}$ |
simple |
2.5.ac_h |
$2$ |
$\F_{5}$ |
$5$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 3 x + 5 x^{2} )( 1 + x + 5 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 36, 130, 644, 3284, 15606, 77060, 389764, 1954714, 9764676]$ |
$21$ |
$[21, 945, 16128, 401625, 10271541, 243855360, 6020672973, 152251619625, 3817800435456, 95358161970225]$ |
$6$ |
$6$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-19}) \) |
$C_2$, $C_2$ |
1.5.ad $\times$ 1.5.b |
2.5.ac_i |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 8 x^{2} - 10 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 38, 136, 630, 3224, 15590, 77060, 389662, 1956916, 9771158]$ |
$22$ |
$[22, 1012, 16918, 392656, 10079542, 243585364, 6020673142, 152212313088, 3822106320934, 95421471864532]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.35136.1 |
$D_{4}$ |
simple |
2.5.ac_j |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 9 x^{2} - 10 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 40, 142, 612, 3144, 15598, 77368, 389892, 1957750, 9774600]$ |
$23$ |
$[23, 1081, 17756, 381593, 9826543, 243683344, 6044594327, 152301779753, 3823737714044, 95455107487801]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.17984.1 |
$D_{4}$ |
simple |
2.5.ac_k |
$2$ |
$\F_{5}$ |
$5$ |
|
|
✓ |
|
✓ |
|
✓ |
✓ |
$( 1 - 2 x + 5 x^{2} )( 1 + 5 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$4$ |
$[4, 42, 148, 590, 3044, 15642, 78068, 390430, 1955524, 9771402]$ |
$24$ |
$[24, 1152, 18648, 368640, 9515544, 244363392, 6099140568, 152510791680, 3819384768024, 95423854465152]$ |
$4$ |
$4$ |
$4$ |
$4$ |
$2$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-5}) \) |
$C_2$, $C_2$ |
1.5.ac $\times$ 1.5.a |
2.5.ac_l |
$2$ |
$\F_{5}$ |
$5$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - x + 5 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 44, 154, 564, 2924, 15734, 79244, 391204, 1948114, 9757724]$ |
$25$ |
$[25, 1225, 19600, 354025, 9150625, 245862400, 6191329225, 152814537225, 3804918384400, 95290298805625]$ |
$1$ |
$1$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
1.5.ab 2 |
2.5.ab_af |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
|
✓ |
|
✓ |
✓ |
$1 - x - 5 x^{2} - 5 x^{3} + 25 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$5$ |
$[5, 15, 95, 635, 2950, 15615, 78055, 389395, 1955885, 9762150]$ |
$15$ |
$[15, 405, 12195, 395685, 9229200, 243985365, 6098100555, 152108040645, 3820089762135, 95333501318400]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.18605.1 |
$D_{4}$ |
simple |
2.5.ab_ae |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x - 4 x^{2} - 5 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$5$ |
$[5, 17, 98, 657, 3025, 15734, 78685, 390337, 1958138, 9769577]$ |
$16$ |
$[16, 448, 12544, 410368, 9456976, 245862400, 6147422416, 152474692608, 3824496519424, 95406021473728]$ |
$1$ |
$1$ |
$6$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}, \sqrt{-19})\) |
$C_2^2$ |
simple |
2.5.ab_ad |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x - 3 x^{2} - 5 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 19, 101, 675, 3090, 15787, 79049, 390627, 1957601, 9770694]$ |
$17$ |
$[17, 493, 12869, 422501, 9656272, 246685861, 6175992917, 152587503653, 3823446265433, 95416945389568]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.81461.1 |
$D_{4}$ |
simple |