Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
2.2.ad_f |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 5 x^{2} - 6 x^{3} + 4 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$0$ |
$[0, 6, 9, 10, 30, 87, 168, 274, 513, 1086]$ |
$1$ |
$[1, 19, 76, 171, 961, 5776, 22051, 69939, 261364, 1113799]$ |
$1$ |
$1$ |
$4$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{5})\) |
$C_2^2$ |
simple |
2.2.ac_d |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 3 x^{2} - 4 x^{3} + 4 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$1$ |
$[1, 7, 7, 15, 51, 91, 127, 255, 547, 987]$ |
$2$ |
$[2, 28, 62, 224, 1762, 6076, 16046, 65408, 280178, 1011388]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.1088.2 |
$D_{4}$ |
simple |
2.2.ac_f |
$2$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - x + 2 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$1$ |
$[1, 11, 19, 15, 11, 47, 155, 319, 523, 911]$ |
$4$ |
$[4, 64, 196, 256, 484, 3136, 20164, 82944, 268324, 937024]$ |
$0$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
1.2.ab 2 |
2.2.ab_ab |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
|
|
$1 - x - x^{2} - 2 x^{3} + 4 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 2, -1, 18, 22, 47, 142, 226, 503, 1082]$ |
$1$ |
$[1, 7, 16, 259, 751, 3136, 18103, 58275, 258064, 1109227]$ |
$0$ |
$0$ |
$6$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}, \sqrt{-7})\) |
$C_2^2$ |
simple |
2.2.ab_b |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + x^{2} - 2 x^{3} + 4 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$[2, 6, 5, 26, 52, 63, 142, 274, 437, 966]$ |
$3$ |
$[3, 27, 36, 459, 1803, 3888, 18357, 70227, 225612, 989847]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.2873.1 |
$D_{4}$ |
simple |
2.2.ab_d |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 3 x^{2} - 2 x^{3} + 4 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$[2, 10, 11, 18, 42, 55, 86, 258, 587, 1050]$ |
$5$ |
$[5, 55, 80, 275, 1375, 3520, 11555, 66275, 302480, 1073875]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.1025.1 |
$D_{4}$ |
simple |
2.2.a_ad |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
|
$1 - 3 x^{2} + 4 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$3$ |
$[3, -1, 9, 15, 33, 83, 129, 319, 513, 1139]$ |
$2$ |
$[2, 4, 74, 256, 1082, 5476, 16298, 82944, 261146, 1170724]$ |
$0$ |
$0$ |
$6$ |
$12$ |
$2$ |
\(\Q(i, \sqrt{7})\) |
$C_2^2$ |
simple |
2.2.a_ab |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x^{2} + 4 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$3$ |
$[3, 3, 9, 31, 33, 87, 129, 223, 513, 903]$ |
$4$ |
$[4, 16, 76, 576, 964, 5776, 16636, 57600, 261364, 929296]$ |
$1$ |
$1$ |
$4$ |
$6$ |
$2$ |
\(\Q(\sqrt{-3}, \sqrt{5})\) |
$C_2^2$ |
simple |
2.2.a_b |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x^{2} + 4 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$3$ |
$[3, 7, 9, 31, 33, 43, 129, 223, 513, 1147]$ |
$6$ |
$[6, 36, 54, 576, 1086, 2916, 16134, 57600, 262926, 1179396]$ |
$1$ |
$1$ |
$4$ |
$12$ |
$2$ |
\(\Q(\sqrt{3}, \sqrt{-5})\) |
$C_2^2$ |
simple |
2.2.a_d |
$2$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - x + 2 x^{2} )( 1 + x + 2 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$3$ |
$[3, 11, 9, 15, 33, 47, 129, 319, 513, 911]$ |
$8$ |
$[8, 64, 56, 256, 968, 3136, 16472, 82944, 263144, 937024]$ |
$0$ |
$0$ |
$6$ |
$6$ |
$2$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-7}) \) |
$C_2$, $C_2$ |
1.2.ab $\times$ 1.2.b |
2.2.b_ab |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
|
|
$1 + x - x^{2} + 2 x^{3} + 4 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 2, 19, 18, 44, 47, 116, 226, 523, 1082]$ |
$7$ |
$[7, 7, 196, 259, 1477, 3136, 14749, 58275, 268324, 1109227]$ |
$0$ |
$0$ |
$6$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}, \sqrt{-7})\) |
$C_2^2$ |
simple |
2.2.b_b |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + x^{2} + 2 x^{3} + 4 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 6, 13, 26, 14, 63, 116, 274, 589, 966]$ |
$9$ |
$[9, 27, 108, 459, 549, 3888, 15003, 70227, 303588, 989847]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.2873.1 |
$D_{4}$ |
simple |
2.2.b_d |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 3 x^{2} + 2 x^{3} + 4 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 10, 7, 18, 24, 55, 172, 258, 439, 1050]$ |
$11$ |
$[11, 55, 44, 275, 781, 3520, 22649, 66275, 226556, 1073875]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.1025.1 |
$D_{4}$ |
simple |
2.2.c_d |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 3 x^{2} + 4 x^{3} + 4 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 7, 11, 15, 15, 91, 131, 255, 479, 987]$ |
$14$ |
$[14, 28, 98, 224, 574, 6076, 16562, 65408, 245294, 1011388]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.1088.2 |
$D_{4}$ |
simple |
2.2.c_f |
$2$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 + x + 2 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$5$ |
$[5, 11, -1, 15, 55, 47, 103, 319, 503, 911]$ |
$16$ |
$[16, 64, 16, 256, 1936, 3136, 13456, 82944, 258064, 937024]$ |
$0$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
1.2.b 2 |
2.2.d_f |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 5 x^{2} + 6 x^{3} + 4 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$6$ |
$[6, 6, 9, 10, 36, 87, 90, 274, 513, 1086]$ |
$19$ |
$[19, 19, 76, 171, 1159, 5776, 11989, 69939, 261364, 1113799]$ |
$1$ |
$1$ |
$4$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{5})\) |
$C_2^2$ |
simple |
2.3.ae_i |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 8 x^{2} - 12 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$0$ |
$[0, 10, 24, 54, 200, 730, 2240, 6494, 19392, 59050]$ |
$2$ |
$[2, 68, 626, 4624, 49282, 532100, 4898098, 42614784, 381715394, 3486898628]$ |
$1$ |
$1$ |
$8$ |
$24$ |
$4$ |
\(\Q(\zeta_{8})\) |
$C_2^2$ |
simple |
2.3.ae_k |
$2$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 2 x + 3 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$0$ |
$[0, 14, 48, 110, 240, 638, 2016, 6494, 20064, 60014]$ |
$4$ |
$[4, 144, 1444, 9216, 58564, 467856, 4418404, 42614784, 394975876, 3544059024]$ |
$1$ |
$1$ |
$8$ |
$8$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
1.3.ac 2 |
2.3.ad_f |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 5 x^{2} - 9 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$1$ |
$[1, 11, 19, 59, 256, 791, 2185, 6563, 20143, 59846]$ |
$3$ |
$[3, 81, 549, 4941, 62448, 578097, 4778049, 43050933, 396546543, 3534057216]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.2197.1 |
$C_4$ |
simple |
2.3.ad_h |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 7 x^{2} - 9 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$1$ |
$[1, 15, 37, 83, 256, 795, 2227, 6323, 19171, 58950]$ |
$5$ |
$[5, 145, 1055, 6525, 62000, 581305, 4870955, 41505525, 377427305, 3480928000]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.1525.1 |
$D_{4}$ |
simple |
2.3.ad_i |
$2$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 2 x + 3 x^{2} )( 1 - x + 3 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$1$ |
$[1, 17, 46, 89, 211, 674, 2185, 6641, 19738, 59057]$ |
$6$ |
$[6, 180, 1368, 7200, 51546, 492480, 4773642, 43574400, 388496952, 3487086900]$ |
$0$ |
$0$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-11}) \) |
$C_2$, $C_2$ |
1.3.ac $\times$ 1.3.ab |
2.3.ac_b |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + x^{2} - 6 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 8, 8, 68, 242, 638, 2102, 6596, 19304, 58568]$ |
$3$ |
$[3, 57, 324, 5529, 58323, 467856, 4600011, 43264425, 380016036, 3458495577]$ |
$1$ |
$1$ |
$8$ |
$24$ |
$3$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
$C_2^2$ |
simple |
2.3.ac_c |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 2 x^{2} - 6 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 10, 14, 78, 282, 730, 2214, 6878, 19922, 59050]$ |
$4$ |
$[4, 80, 436, 6400, 69044, 531920, 4840196, 45158400, 392133604, 3486722000]$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
\(\Q(i, \sqrt{5})\) |
$C_2^2$ |
simple |
2.3.ac_e |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 4 x^{2} - 6 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$[2, 14, 26, 86, 302, 782, 2102, 6494, 19682, 58334]$ |
$6$ |
$[6, 132, 702, 6864, 74526, 571428, 4598502, 42611712, 387350262, 3444740772]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.7488.1 |
$D_{4}$ |
simple |
2.3.ac_f |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 5 x^{2} - 6 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$[2, 16, 32, 84, 282, 766, 2046, 6308, 19760, 59296]$ |
$7$ |
$[7, 161, 868, 6601, 69167, 558992, 4481687, 41408073, 388913476, 3501441041]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.4672.2 |
$D_{4}$ |
simple |
2.3.ac_h |
$2$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - x + 3 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 20, 44, 68, 182, 710, 2354, 6788, 19412, 58100]$ |
$9$ |
$[9, 225, 1296, 5625, 45369, 518400, 5157441, 44555625, 382124304, 3431030625]$ |
$1$ |
$1$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
1.3.ab 2 |
2.3.ab_ac |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x - 2 x^{2} - 3 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$3$ |
$[3, 5, 12, 89, 213, 710, 2271, 6449, 19956, 59525]$ |
$4$ |
$[4, 48, 400, 7104, 52204, 518400, 4969276, 42311424, 392832400, 3514999728]$ |
$1$ |
$1$ |
$6$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}, \sqrt{-11})\) |
$C_2^2$ |
simple |
2.3.ab_ab |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x - x^{2} - 3 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 7, 15, 99, 248, 739, 2369, 6611, 19905, 59782]$ |
$5$ |
$[5, 65, 455, 8125, 60400, 538265, 5191555, 43363125, 391801865, 3530259200]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.10933.1 |
$D_{4}$ |
simple |
2.3.ab_b |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + x^{2} - 3 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 11, 21, 107, 288, 719, 2271, 6563, 19173, 58886]$ |
$7$ |
$[7, 105, 553, 8925, 70672, 522585, 4970413, 43063125, 377466187, 3477062400]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.16317.1 |
$D_{4}$ |
simple |
2.3.ab_c |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 2 x^{2} - 3 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 13, 24, 105, 293, 694, 2159, 6545, 19176, 58813]$ |
$8$ |
$[8, 128, 608, 8704, 72088, 505856, 4723384, 42928128, 377524832, 3472911488]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.3757.1 |
$D_{4}$ |
simple |
2.3.ab_e |
$2$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 2 x + 3 x^{2} )( 1 + x + 3 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 17, 30, 89, 273, 674, 2019, 6641, 20010, 59057]$ |
$10$ |
$[10, 180, 760, 7200, 66550, 492480, 4424710, 43574400, 393902680, 3487086900]$ |
$1$ |
$1$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-11}) \) |
$C_2$, $C_2$ |
1.3.ac $\times$ 1.3.b |
2.3.ab_f |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 5 x^{2} - 3 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 19, 33, 75, 248, 703, 2075, 6659, 20229, 59014]$ |
$11$ |
$[11, 209, 869, 6061, 60016, 511841, 4542241, 43693749, 398261831, 3484769024]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.2725.1 |
$D_{4}$ |
simple |
2.3.a_af |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
|
$1 - 5 x^{2} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 0, 28, 68, 244, 750, 2188, 6788, 19684, 60000]$ |
$5$ |
$[5, 25, 740, 5625, 59525, 547600, 4785485, 44555625, 387399620, 3543225625]$ |
$0$ |
$0$ |
$6$ |
$12$ |
$2$ |
\(\Q(i, \sqrt{11})\) |
$C_2^2$ |
simple |
2.3.a_ae |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
|
$1 - 4 x^{2} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 2, 28, 86, 244, 818, 2188, 6878, 19684, 59522]$ |
$6$ |
$[6, 36, 774, 7056, 59286, 599076, 4778934, 45158400, 387409446, 3514829796]$ |
$0$ |
$0$ |
$4$ |
$8$ |
$2$ |
\(\Q(\sqrt{-2}, \sqrt{-5})\) |
$C_2^2$ |
simple |
2.3.a_ac |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x^{2} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 6, 28, 110, 244, 822, 2188, 6494, 19684, 58086]$ |
$8$ |
$[8, 64, 776, 9216, 58568, 602176, 4785992, 42614784, 387417224, 3430210624]$ |
$2$ |
$2$ |
$8$ |
$12$ |
$2$ |
\(\Q(\zeta_{8})\) |
$C_2^2$ |
simple |
2.3.a_ab |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x^{2} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 8, 28, 116, 244, 782, 2188, 6308, 19684, 58328]$ |
$9$ |
$[9, 81, 756, 9801, 58689, 571536, 4787001, 41409225, 387381204, 3444398721]$ |
$1$ |
$1$ |
$2$ |
$4$ |
$2$ |
\(\Q(\sqrt{-5}, \sqrt{7})\) |
$C_2^2$ |
simple |
2.3.a_b |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x^{2} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 12, 28, 116, 244, 678, 2188, 6308, 19684, 59772]$ |
$11$ |
$[11, 121, 704, 9801, 59411, 495616, 4778939, 41409225, 387459776, 3529666921]$ |
$1$ |
$1$ |
$2$ |
$4$ |
$2$ |
\(\Q(\sqrt{5}, \sqrt{-7})\) |
$C_2^2$ |
simple |
2.3.a_c |
$2$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 2 x + 3 x^{2} )( 1 + 2 x + 3 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 14, 28, 110, 244, 638, 2188, 6494, 19684, 60014]$ |
$12$ |
$[12, 144, 684, 9216, 59532, 467856, 4779948, 42614784, 387423756, 3544059024]$ |
$2$ |
$2$ |
$8$ |
$8$ |
$2$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-2}) \) |
$C_2$, $C_2$ |
1.3.ac $\times$ 1.3.c |
2.3.a_e |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x^{2} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 18, 28, 86, 244, 642, 2188, 6878, 19684, 58578]$ |
$14$ |
$[14, 196, 686, 7056, 58814, 470596, 4787006, 45158400, 387431534, 3459086596]$ |
$1$ |
$1$ |
$4$ |
$8$ |
$2$ |
\(\Q(\sqrt{2}, \sqrt{-5})\) |
$C_2^2$ |
simple |
2.3.a_f |
$2$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - x + 3 x^{2} )( 1 + x + 3 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 20, 28, 68, 244, 710, 2188, 6788, 19684, 58100]$ |
$15$ |
$[15, 225, 720, 5625, 58575, 518400, 4780455, 44555625, 387441360, 3431030625]$ |
$2$ |
$2$ |
$6$ |
$6$ |
$2$ |
\(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-11}) \) |
$C_2$, $C_2$ |
1.3.ab $\times$ 1.3.b |
2.3.b_ac |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x - 2 x^{2} + 3 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$5$ |
$[5, 5, 44, 89, 275, 710, 2105, 6449, 19412, 59525]$ |
$12$ |
$[12, 48, 1296, 7104, 67332, 518400, 4606068, 42311424, 382124304, 3514999728]$ |
$1$ |
$1$ |
$6$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}, \sqrt{-11})\) |
$C_2^2$ |
simple |
2.3.b_ab |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x - x^{2} + 3 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 7, 41, 99, 240, 739, 2007, 6611, 19463, 59782]$ |
$13$ |
$[13, 65, 1183, 8125, 58448, 538265, 4399499, 43363125, 383101537, 3530259200]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.10933.1 |
$D_{4}$ |
simple |
2.3.b_b |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + x^{2} + 3 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 11, 35, 107, 200, 719, 2105, 6563, 20195, 58886]$ |
$15$ |
$[15, 105, 945, 8925, 49200, 522585, 4607205, 43063125, 397583235, 3477062400]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.16317.1 |
$D_{4}$ |
simple |
2.3.b_c |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 2 x^{2} + 3 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 13, 32, 105, 195, 694, 2217, 6545, 20192, 58813]$ |
$16$ |
$[16, 128, 832, 8704, 48176, 505856, 4850288, 42928128, 397523776, 3472911488]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.3757.1 |
$D_{4}$ |
simple |
2.3.b_e |
$2$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - x + 3 x^{2} )( 1 + 2 x + 3 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 17, 26, 89, 215, 674, 2357, 6641, 19358, 59057]$ |
$18$ |
$[18, 180, 648, 7200, 52398, 492480, 5164254, 43574400, 381068712, 3487086900]$ |
$1$ |
$1$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-2}) \) |
$C_2$, $C_2$ |
1.3.ab $\times$ 1.3.c |
2.3.b_f |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 5 x^{2} + 3 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 19, 23, 75, 240, 703, 2301, 6659, 19139, 59014]$ |
$19$ |
$[19, 209, 589, 6061, 58064, 511841, 5036729, 43693749, 376806271, 3484769024]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.2725.1 |
$D_{4}$ |
simple |
2.3.c_b |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + x^{2} + 6 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$6$ |
$[6, 8, 48, 68, 246, 638, 2274, 6596, 20064, 58568]$ |
$19$ |
$[19, 57, 1444, 5529, 59299, 467856, 4976347, 43264425, 394975876, 3458495577]$ |
$1$ |
$1$ |
$8$ |
$24$ |
$3$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
$C_2^2$ |
simple |
2.3.c_c |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 2 x^{2} + 6 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$6$ |
$[6, 10, 42, 78, 206, 730, 2162, 6878, 19446, 59050]$ |
$20$ |
$[20, 80, 1220, 6400, 50500, 531920, 4726420, 45158400, 382764020, 3486722000]$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
\(\Q(i, \sqrt{5})\) |
$C_2^2$ |
simple |
2.3.c_e |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 4 x^{2} + 6 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$6$ |
$[6, 14, 30, 86, 186, 782, 2274, 6494, 19686, 58334]$ |
$22$ |
$[22, 132, 814, 6864, 46222, 571428, 4974838, 42611712, 387428998, 3444740772]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.7488.1 |
$D_{4}$ |
simple |
2.3.c_f |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 5 x^{2} + 6 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$6$ |
$[6, 16, 24, 84, 206, 766, 2330, 6308, 19608, 59296]$ |
$23$ |
$[23, 161, 644, 6601, 50623, 558992, 5103079, 41408073, 385921508, 3501441041]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.4672.2 |
$D_{4}$ |
simple |