Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
1.2.ac |
$1$ |
$\F_{2}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 - 2 x + 2 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$1$ |
$[1, 5, 13, 25, 41, 65, 113, 225, 481, 1025]$ |
$1$ |
$[1, 5, 13, 25, 41, 65, 113, 225, 481, 1025]$ |
$1$ |
$1$ |
$3$ |
$8$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.2.ab |
$1$ |
$\F_{2}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 2 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$2$ |
$[2, 8, 14, 16, 22, 56, 142, 288, 518, 968]$ |
$2$ |
$[2, 8, 14, 16, 22, 56, 142, 288, 518, 968]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
1.2.a |
$1$ |
$\F_{2}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 2 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$3$ |
$[3, 9, 9, 9, 33, 81, 129, 225, 513, 1089]$ |
$3$ |
$[3, 9, 9, 9, 33, 81, 129, 225, 513, 1089]$ |
$1$ |
$1$ |
$3$ |
$8$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
1.2.b |
$1$ |
$\F_{2}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 2 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$4$ |
$[4, 8, 4, 16, 44, 56, 116, 288, 508, 968]$ |
$4$ |
$[4, 8, 4, 16, 44, 56, 116, 288, 508, 968]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
1.2.c |
$1$ |
$\F_{2}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 2 x + 2 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$5$ |
$[5, 5, 5, 25, 25, 65, 145, 225, 545, 1025]$ |
$5$ |
$[5, 5, 5, 25, 25, 65, 145, 225, 545, 1025]$ |
$1$ |
$1$ |
$3$ |
$8$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.3.ad |
$1$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 - 3 x + 3 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$1$ |
$[1, 7, 28, 91, 271, 784, 2269, 6643, 19684, 58807]$ |
$1$ |
$[1, 7, 28, 91, 271, 784, 2269, 6643, 19684, 58807]$ |
$1$ |
$1$ |
$3$ |
$3$ |
$6$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.3.ac |
$1$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 3 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$2$ |
$[2, 12, 38, 96, 242, 684, 2102, 6528, 19874, 59532]$ |
$2$ |
$[2, 12, 38, 96, 242, 684, 2102, 6528, 19874, 59532]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
1.3.ab |
$1$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 3 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$3$ |
$[3, 15, 36, 75, 213, 720, 2271, 6675, 19548, 58575]$ |
$3$ |
$[3, 15, 36, 75, 213, 720, 2271, 6675, 19548, 58575]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
1.3.a |
$1$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 3 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$4$ |
$[4, 16, 28, 64, 244, 784, 2188, 6400, 19684, 59536]$ |
$4$ |
$[4, 16, 28, 64, 244, 784, 2188, 6400, 19684, 59536]$ |
$2$ |
$2$ |
$3$ |
$6$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.3.b |
$1$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 3 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$5$ |
$[5, 15, 20, 75, 275, 720, 2105, 6675, 19820, 58575]$ |
$5$ |
$[5, 15, 20, 75, 275, 720, 2105, 6675, 19820, 58575]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
1.3.c |
$1$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 3 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$6$ |
$[6, 12, 18, 96, 246, 684, 2274, 6528, 19494, 59532]$ |
$6$ |
$[6, 12, 18, 96, 246, 684, 2274, 6528, 19494, 59532]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
1.3.d |
$1$ |
$\F_{3}$ |
$3$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 3 x + 3 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$7$ |
$[7, 7, 28, 91, 217, 784, 2107, 6643, 19684, 58807]$ |
$7$ |
$[7, 7, 28, 91, 217, 784, 2107, 6643, 19684, 58807]$ |
$1$ |
$1$ |
$3$ |
$6$ |
$6$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.4.ae |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$( 1 - 2 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$1$ |
$[1, 9, 49, 225, 961, 3969, 16129, 65025, 261121, 1046529]$ |
$1$ |
$[1, 9, 49, 225, 961, 3969, 16129, 65025, 261121, 1046529]$ |
$1$ |
$1$ |
$5$ |
$6$ |
$1$ |
\(\Q\) |
Trivial |
simple |
1.4.ad |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 4 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$2$ |
$[2, 16, 74, 288, 1082, 4144, 16298, 65088, 261146, 1047376]$ |
$2$ |
$[2, 16, 74, 288, 1082, 4144, 16298, 65088, 261146, 1047376]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
1.4.ac |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 - 2 x + 4 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$3$ |
$[3, 21, 81, 273, 993, 3969, 16257, 65793, 263169, 1049601]$ |
$3$ |
$[3, 21, 81, 273, 993, 3969, 16257, 65793, 263169, 1049601]$ |
$2$ |
$2$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.4.ab |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 4 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$4$ |
$[4, 24, 76, 240, 964, 4104, 16636, 65760, 261364, 1046904]$ |
$4$ |
$[4, 24, 76, 240, 964, 4104, 16636, 65760, 261364, 1046904]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-15}) \) |
$C_2$ |
simple |
1.4.a |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 4 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$5$ |
$[5, 25, 65, 225, 1025, 4225, 16385, 65025, 262145, 1050625]$ |
$5$ |
$[5, 25, 65, 225, 1025, 4225, 16385, 65025, 262145, 1050625]$ |
$1$ |
$1$ |
$5$ |
$12$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.4.b |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 4 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$6$ |
$[6, 24, 54, 240, 1086, 4104, 16134, 65760, 262926, 1046904]$ |
$6$ |
$[6, 24, 54, 240, 1086, 4104, 16134, 65760, 262926, 1046904]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-15}) \) |
$C_2$ |
simple |
1.4.c |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 2 x + 4 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$7$ |
$[7, 21, 49, 273, 1057, 3969, 16513, 65793, 261121, 1049601]$ |
$7$ |
$[7, 21, 49, 273, 1057, 3969, 16513, 65793, 261121, 1049601]$ |
$2$ |
$2$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.4.d |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 4 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$8$ |
$[8, 16, 56, 288, 968, 4144, 16472, 65088, 263144, 1047376]$ |
$8$ |
$[8, 16, 56, 288, 968, 4144, 16472, 65088, 263144, 1047376]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
1.4.e |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$( 1 + 2 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$9$ |
$[9, 9, 81, 225, 1089, 3969, 16641, 65025, 263169, 1046529]$ |
$9$ |
$[9, 9, 81, 225, 1089, 3969, 16641, 65025, 263169, 1046529]$ |
$1$ |
$1$ |
$5$ |
$6$ |
$1$ |
\(\Q\) |
Trivial |
simple |
1.5.ae |
$1$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 5 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$2$ |
$[2, 20, 122, 640, 3202, 15860, 78682, 391680, 1954562, 9766100]$ |
$2$ |
$[2, 20, 122, 640, 3202, 15860, 78682, 391680, 1954562, 9766100]$ |
$1$ |
$1$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.5.ad |
$1$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 5 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$3$ |
$[3, 27, 144, 675, 3183, 15552, 77619, 389475, 1952208, 9768627]$ |
$3$ |
$[3, 27, 144, 675, 3183, 15552, 77619, 389475, 1952208, 9768627]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
1.5.ac |
$1$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 5 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$4$ |
$[4, 32, 148, 640, 3044, 15392, 78068, 391680, 1955524, 9765152]$ |
$4$ |
$[4, 32, 148, 640, 3044, 15392, 78068, 391680, 1955524, 9765152]$ |
$2$ |
$2$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.5.ab |
$1$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 5 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$5$ |
$[5, 35, 140, 595, 3025, 15680, 78685, 390915, 1950620, 9761675]$ |
$5$ |
$[5, 35, 140, 595, 3025, 15680, 78685, 390915, 1950620, 9761675]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
1.5.a |
$1$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 5 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$6$ |
$[6, 36, 126, 576, 3126, 15876, 78126, 389376, 1953126, 9771876]$ |
$6$ |
$[6, 36, 126, 576, 3126, 15876, 78126, 389376, 1953126, 9771876]$ |
$2$ |
$2$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-5}) \) |
$C_2$ |
simple |
1.5.b |
$1$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 5 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$7$ |
$[7, 35, 112, 595, 3227, 15680, 77567, 390915, 1955632, 9761675]$ |
$7$ |
$[7, 35, 112, 595, 3227, 15680, 77567, 390915, 1955632, 9761675]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
1.5.c |
$1$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 5 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$8$ |
$[8, 32, 104, 640, 3208, 15392, 78184, 391680, 1950728, 9765152]$ |
$8$ |
$[8, 32, 104, 640, 3208, 15392, 78184, 391680, 1950728, 9765152]$ |
$2$ |
$2$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.5.d |
$1$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 5 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$9$ |
$[9, 27, 108, 675, 3069, 15552, 78633, 389475, 1954044, 9768627]$ |
$9$ |
$[9, 27, 108, 675, 3069, 15552, 78633, 389475, 1954044, 9768627]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
1.5.e |
$1$ |
$\F_{5}$ |
$5$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 5 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$10$ |
$[10, 20, 130, 640, 3050, 15860, 77570, 391680, 1951690, 9766100]$ |
$10$ |
$[10, 20, 130, 640, 3050, 15860, 77570, 391680, 1951690, 9766100]$ |
$1$ |
$1$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.7.af |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$3$ |
$[3, 39, 324, 2379, 16833, 117936, 824799, 5769075, 40366188, 282508239]$ |
$3$ |
$[3, 39, 324, 2379, 16833, 117936, 824799, 5769075, 40366188, 282508239]$ |
$1$ |
$1$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.7.ae |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$4$ |
$[4, 48, 364, 2496, 17044, 117936, 823036, 5760768, 40341028, 282453168]$ |
$4$ |
$[4, 48, 364, 2496, 17044, 117936, 823036, 5760768, 40341028, 282453168]$ |
$2$ |
$2$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.7.ad |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$5$ |
$[5, 55, 380, 2475, 16775, 117040, 821945, 5764275, 40363220, 282507775]$ |
$5$ |
$[5, 55, 380, 2475, 16775, 117040, 821945, 5764275, 40363220, 282507775]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
1.7.ac |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$6$ |
$[6, 60, 378, 2400, 16566, 117180, 824298, 5769600, 40357926, 282450300]$ |
$6$ |
$[6, 60, 378, 2400, 16566, 117180, 824298, 5769600, 40357926, 282450300]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
simple |
1.7.ab |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$7$ |
$[7, 63, 364, 2331, 16597, 117936, 825307, 5764563, 40341028, 282464343]$ |
$7$ |
$[7, 63, 364, 2331, 16597, 117936, 825307, 5764563, 40341028, 282464343]$ |
$2$ |
$2$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.7.a |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 7 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$8$ |
$[8, 64, 344, 2304, 16808, 118336, 823544, 5760000, 40353608, 282508864]$ |
$8$ |
$[8, 64, 344, 2304, 16808, 118336, 823544, 5760000, 40353608, 282508864]$ |
$2$ |
$2$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
1.7.b |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$9$ |
$[9, 63, 324, 2331, 17019, 117936, 821781, 5764563, 40366188, 282464343]$ |
$9$ |
$[9, 63, 324, 2331, 17019, 117936, 821781, 5764563, 40366188, 282464343]$ |
$2$ |
$2$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.7.c |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$10$ |
$[10, 60, 310, 2400, 17050, 117180, 822790, 5769600, 40349290, 282450300]$ |
$10$ |
$[10, 60, 310, 2400, 17050, 117180, 822790, 5769600, 40349290, 282450300]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
simple |
1.7.d |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$11$ |
$[11, 55, 308, 2475, 16841, 117040, 825143, 5764275, 40343996, 282507775]$ |
$11$ |
$[11, 55, 308, 2475, 16841, 117040, 825143, 5764275, 40343996, 282507775]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
1.7.e |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$12$ |
$[12, 48, 324, 2496, 16572, 117936, 824052, 5760768, 40366188, 282453168]$ |
$12$ |
$[12, 48, 324, 2496, 16572, 117936, 824052, 5760768, 40366188, 282453168]$ |
$2$ |
$2$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.7.f |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$13$ |
$[13, 39, 364, 2379, 16783, 117936, 822289, 5769075, 40341028, 282508239]$ |
$13$ |
$[13, 39, 364, 2379, 16783, 117936, 822289, 5769075, 40341028, 282508239]$ |
$1$ |
$1$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.8.af |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 8 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$4$ |
$[4, 56, 508, 4144, 33044, 263144, 2099948, 16783200, 134225284, 1073731736]$ |
$4$ |
$[4, 56, 508, 4144, 33044, 263144, 2099948, 16783200, 134225284, 1073731736]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
1.8.ae |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 - 4 x + 8 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$5$ |
$[5, 65, 545, 4225, 33025, 262145, 2095105, 16769025, 134201345, 1073741825]$ |
$5$ |
$[5, 65, 545, 4225, 33025, 262145, 2095105, 16769025, 134201345, 1073741825]$ |
$1$ |
$1$ |
$3$ |
$8$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.8.ad |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 8 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$6$ |
$[6, 72, 558, 4176, 32646, 261144, 2095134, 16779168, 134239734, 1073792232]$ |
$6$ |
$[6, 72, 558, 4176, 32646, 261144, 2095134, 16779168, 134239734, 1073792232]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-23}) \) |
$C_2$ |
simple |
1.8.ab |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 8 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$8$ |
$[8, 80, 536, 4000, 32488, 262640, 2099896, 16776000, 134194568, 1073728400]$ |
$8$ |
$[8, 80, 536, 4000, 32488, 262640, 2099896, 16776000, 134194568, 1073728400]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-31}) \) |
$C_2$ |
simple |
1.8.a |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 8 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$9$ |
$[9, 81, 513, 3969, 32769, 263169, 2097153, 16769025, 134217729, 1073807361]$ |
$9$ |
$[9, 81, 513, 3969, 32769, 263169, 2097153, 16769025, 134217729, 1073807361]$ |
$1$ |
$1$ |
$3$ |
$8$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
1.8.b |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 8 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$10$ |
$[10, 80, 490, 4000, 33050, 262640, 2094410, 16776000, 134240890, 1073728400]$ |
$10$ |
$[10, 80, 490, 4000, 33050, 262640, 2094410, 16776000, 134240890, 1073728400]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-31}) \) |
$C_2$ |
simple |
1.8.d |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 8 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$12$ |
$[12, 72, 468, 4176, 32892, 261144, 2099172, 16779168, 134195724, 1073792232]$ |
$12$ |
$[12, 72, 468, 4176, 32892, 261144, 2099172, 16779168, 134195724, 1073792232]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-23}) \) |
$C_2$ |
simple |
1.8.e |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 4 x + 8 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$13$ |
$[13, 65, 481, 4225, 32513, 262145, 2099201, 16769025, 134234113, 1073741825]$ |
$13$ |
$[13, 65, 481, 4225, 32513, 262145, 2099201, 16769025, 134234113, 1073741825]$ |
$1$ |
$1$ |
$3$ |
$8$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.8.f |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 8 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$14$ |
$[14, 56, 518, 4144, 32494, 263144, 2094358, 16783200, 134210174, 1073731736]$ |
$14$ |
$[14, 56, 518, 4144, 32494, 263144, 2094358, 16783200, 134210174, 1073731736]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |