Base field 3.3.961.1
Generator \(w\), with minimal polynomial \(x^{3} - x^{2} - 10x + 8\); narrow class number \(1\) and class number \(1\).
Form
Weight: | $[2, 2, 2]$ |
Level: | $[8, 2, 2]$ |
Dimension: | $1$ |
CM: | no |
Base change: | no |
Newspace dimension: | $5$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
2 | $[2, 2, \frac{1}{2}w^{2} - \frac{1}{2}w - 4]$ | $-1$ |
2 | $[2, 2, \frac{1}{2}w^{2} + \frac{1}{2}w - 3]$ | $\phantom{-}1$ |
2 | $[2, 2, -w + 1]$ | $-1$ |
23 | $[23, 23, -w^{2} + w + 7]$ | $\phantom{-}0$ |
23 | $[23, 23, w^{2} + w - 7]$ | $\phantom{-}0$ |
23 | $[23, 23, -2w + 1]$ | $\phantom{-}0$ |
27 | $[27, 3, 3]$ | $\phantom{-}4$ |
29 | $[29, 29, -w^{2} - 3w + 1]$ | $-6$ |
29 | $[29, 29, w^{2} - 3w + 1]$ | $-6$ |
29 | $[29, 29, -2w^{2} + 21]$ | $\phantom{-}6$ |
31 | $[31, 31, -3w^{2} + w + 31]$ | $\phantom{-}8$ |
47 | $[47, 47, 2w - 3]$ | $\phantom{-}0$ |
47 | $[47, 47, w^{2} + w - 5]$ | $\phantom{-}0$ |
47 | $[47, 47, w^{2} - w - 9]$ | $\phantom{-}0$ |
61 | $[61, 61, w^{2} - w - 11]$ | $\phantom{-}2$ |
61 | $[61, 61, -w^{2} - w + 3]$ | $\phantom{-}2$ |
61 | $[61, 61, -2w + 5]$ | $\phantom{-}14$ |
89 | $[89, 89, w^{2} - w - 1]$ | $-6$ |
89 | $[89, 89, w^{2} + w - 13]$ | $\phantom{-}6$ |
89 | $[89, 89, -2w - 5]$ | $-18$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$2$ | $[2, 2, \frac{1}{2}w^{2} - \frac{1}{2}w - 4]$ | $1$ |
$2$ | $[2, 2, \frac{1}{2}w^{2} + \frac{1}{2}w - 3]$ | $-1$ |
$2$ | $[2, 2, -w + 1]$ | $1$ |