Properties

Label 116.1.d.a
Level $116$
Weight $1$
Character orbit 116.d
Self dual yes
Analytic conductor $0.058$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -116
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [116,1,Mod(115,116)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(116, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("116.115");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 116 = 2^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 116.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.0578915414654\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.116.1
Artin image: $D_6$
Artin field: Galois closure of 6.0.53824.1
Stark unit: Root of $x^{6} + x^{5} - 8x^{4} - 17x^{3} - 8x^{2} + x + 1$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{8} + q^{10} + q^{11} + q^{12} - q^{13} - q^{15} + q^{16} - 2 q^{19} - q^{20} - q^{22} - q^{24} + q^{26} - q^{27} + q^{29} + q^{30} + q^{31} - q^{32} + q^{33} + 2 q^{38} - q^{39} + q^{40} + q^{43} + q^{44} + q^{47} + q^{48} + q^{49} - q^{52} - q^{53} + q^{54} - q^{55} - 2 q^{57} - q^{58} - q^{60} - q^{62} + q^{64} + q^{65} - q^{66} - 2 q^{76} + q^{78} + q^{79} - q^{80} - q^{81} - q^{86} + q^{87} - q^{88} + q^{93} - q^{94} + 2 q^{95} - q^{96} - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/116\mathbb{Z}\right)^\times\).

\(n\) \(59\) \(89\)
\(\chi(n)\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
115.1
0
−1.00000 1.00000 1.00000 −1.00000 −1.00000 0 −1.00000 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
116.d odd 2 1 CM by \(\Q(\sqrt{-29}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 116.1.d.a 1
3.b odd 2 1 1044.1.g.b 1
4.b odd 2 1 116.1.d.b yes 1
5.b even 2 1 2900.1.g.d 1
5.c odd 4 2 2900.1.e.b 2
8.b even 2 1 1856.1.h.a 1
8.d odd 2 1 1856.1.h.c 1
12.b even 2 1 1044.1.g.a 1
20.d odd 2 1 2900.1.g.a 1
20.e even 4 2 2900.1.e.a 2
29.b even 2 1 116.1.d.b yes 1
29.c odd 4 2 3364.1.b.a 2
29.d even 7 6 3364.1.h.b 6
29.e even 14 6 3364.1.h.a 6
29.f odd 28 12 3364.1.j.f 12
87.d odd 2 1 1044.1.g.a 1
116.d odd 2 1 CM 116.1.d.a 1
116.e even 4 2 3364.1.b.a 2
116.h odd 14 6 3364.1.h.b 6
116.j odd 14 6 3364.1.h.a 6
116.l even 28 12 3364.1.j.f 12
145.d even 2 1 2900.1.g.a 1
145.h odd 4 2 2900.1.e.a 2
232.b odd 2 1 1856.1.h.a 1
232.g even 2 1 1856.1.h.c 1
348.b even 2 1 1044.1.g.b 1
580.e odd 2 1 2900.1.g.d 1
580.o even 4 2 2900.1.e.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
116.1.d.a 1 1.a even 1 1 trivial
116.1.d.a 1 116.d odd 2 1 CM
116.1.d.b yes 1 4.b odd 2 1
116.1.d.b yes 1 29.b even 2 1
1044.1.g.a 1 12.b even 2 1
1044.1.g.a 1 87.d odd 2 1
1044.1.g.b 1 3.b odd 2 1
1044.1.g.b 1 348.b even 2 1
1856.1.h.a 1 8.b even 2 1
1856.1.h.a 1 232.b odd 2 1
1856.1.h.c 1 8.d odd 2 1
1856.1.h.c 1 232.g even 2 1
2900.1.e.a 2 20.e even 4 2
2900.1.e.a 2 145.h odd 4 2
2900.1.e.b 2 5.c odd 4 2
2900.1.e.b 2 580.o even 4 2
2900.1.g.a 1 20.d odd 2 1
2900.1.g.a 1 145.d even 2 1
2900.1.g.d 1 5.b even 2 1
2900.1.g.d 1 580.e odd 2 1
3364.1.b.a 2 29.c odd 4 2
3364.1.b.a 2 116.e even 4 2
3364.1.h.a 6 29.e even 14 6
3364.1.h.a 6 116.j odd 14 6
3364.1.h.b 6 29.d even 7 6
3364.1.h.b 6 116.h odd 14 6
3364.1.j.f 12 29.f odd 28 12
3364.1.j.f 12 116.l even 28 12

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 1 \) acting on \(S_{1}^{\mathrm{new}}(116, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T + 2 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T - 1 \) Copy content Toggle raw display
$31$ \( T - 1 \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T - 1 \) Copy content Toggle raw display
$47$ \( T - 1 \) Copy content Toggle raw display
$53$ \( T + 1 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T - 1 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less