The database currently contains 215,630 Bianchi modular forms of weight 2 over 32 imaginary quadratic fields, and 400,198 spaces of cusp forms over 32 imaginary quadratic fields, including all with class number one.
Distribution of Bianchi modular forms by base field and level norm
level norm | ||||||||
---|---|---|---|---|---|---|---|---|
1-100 | 101-1000 | 1001-10000 | 10001-50000 | 50001-100000 | 100001-150000 | Total | ||
base field
|
\(\Q(\sqrt{-3}) \) | 3 | 127 | 2080 | 11072 | 14445 | 14616 | 42343 |
0.01% | 0.30% | 4.91% | 26.15% | 34.11% | 34.52% | 19.64% | ||
\(\Q(\sqrt{-1}) \) | 5 | 188 | 2967 | 15982 | 20888 | 40030 | ||
0.01% | 0.47% | 7.41% | 39.93% | 52.18% | 18.56% | |||
\(\Q(\sqrt{-7}) \) | 16 | 301 | 5606 | 29901 | 35824 | |||
0.04% | 0.84% | 15.65% | 83.47% | 16.61% | ||||
\(\Q(\sqrt{-2}) \) | 10 | 345 | 5884 | 30604 | 36843 | |||
0.03% | 0.94% | 15.97% | 83.07% | 17.09% | ||||
\(\Q(\sqrt{-11}) \) | 12 | 314 | 4879 | 25336 | 30541 | |||
0.04% | 1.03% | 15.98% | 82.96% | 14.16% | ||||
\(\Q(\sqrt{-15}) \) | 33 | 658 | 691 | |||||
4.78% | 95.22% | 0.32% | ||||||
\(\Q(\sqrt{-19}) \) | 11 | 200 | 2386 | 1386 | 3983 | |||
0.28% | 5.02% | 59.90% | 34.80% | 1.85% | ||||
\(\Q(\sqrt{-5}) \) | 25 | 635 | 660 | |||||
3.79% | 96.21% | 0.31% | ||||||
\(\Q(\sqrt{-23}) \) | 41 | 889 | 2813 | 3743 | ||||
1.10% | 23.75% | 75.15% | 1.74% | |||||
\(\Q(\sqrt{-6}) \) | 22 | 492 | 514 | |||||
4.28% | 95.72% | 0.24% | ||||||
\(\Q(\sqrt{-31}) \) | 52 | 759 | 4352 | 5163 | ||||
1.01% | 14.70% | 84.29% | 2.39% | |||||
\(\Q(\sqrt{-35}) \) | 31 | 400 | 431 | |||||
7.19% | 92.81% | 0.20% | ||||||
\(\Q(\sqrt{-39}) \) | 59 | 1123 | 1182 | |||||
4.99% | 95.01% | 0.55% | ||||||
\(\Q(\sqrt{-10}) \) | 26 | 312 | 338 | |||||
7.69% | 92.31% | 0.16% | ||||||
\(\Q(\sqrt{-43}) \) | 1 | 65 | 653 | 345 | 1064 | |||
0.09% | 6.11% | 61.37% | 32.42% | 0.49% | ||||
\(\Q(\sqrt{-47}) \) | 64 | 1224 | 1288 | |||||
4.97% | 95.03% | 0.60% | ||||||
\(\Q(\sqrt{-51}) \) | 37 | 267 | 304 | |||||
12.17% | 87.83% | 0.14% | ||||||
\(\Q(\sqrt{-13}) \) | 21 | 269 | 290 | |||||
7.24% | 92.76% | 0.13% | ||||||
\(\Q(\sqrt{-55}) \) | 56 | 807 | 863 | |||||
6.49% | 93.51% | 0.40% | ||||||
\(\Q(\sqrt{-14}) \) | 53 | 809 | 862 | |||||
6.15% | 93.85% | 0.40% | ||||||
\(\Q(\sqrt{-59}) \) | 38 | 526 | 564 | |||||
6.74% | 93.26% | 0.26% | ||||||
\(\Q(\sqrt{-67}) \) | 1 | 31 | 419 | 451 | ||||
0.22% | 6.87% | 92.90% | 0.21% | |||||
\(\Q(\sqrt{-17}) \) | 69 | 707 | 776 | |||||
8.89% | 91.11% | 0.36% | ||||||
\(\Q(\sqrt{-71}) \) | 76 | 1698 | 1774 | |||||
4.28% | 95.72% | 0.82% | ||||||
\(\Q(\sqrt{-79}) \) | 61 | 741 | 802 | |||||
7.61% | 92.39% | 0.37% | ||||||
\(\Q(\sqrt{-83}) \) | 13 | 289 | 302 | |||||
4.30% | 95.70% | 0.14% | ||||||
\(\Q(\sqrt{-21}) \) | 56 | 632 | 688 | |||||
8.14% | 91.86% | 0.32% | ||||||
\(\Q(\sqrt{-87}) \) | 97 | 921 | 1018 | |||||
9.53% | 90.47% | 0.47% | ||||||
\(\Q(\sqrt{-22}) \) | 16 | 193 | 209 | |||||
7.66% | 92.34% | 0.10% | ||||||
\(\Q(\sqrt{-91}) \) | 25 | 194 | 219 | |||||
11.42% | 88.58% | 0.10% | ||||||
\(\Q(\sqrt{-95}) \) | 68 | 1691 | 1759 | |||||
3.87% | 96.13% | 0.82% | ||||||
\(\Q(\sqrt{-163}) \) | 26 | 85 | 111 | |||||
23.42% | 76.58% | 0.05% | ||||||
Total | 1098 | 17833 | 32124 | 114626 | 35333 | 14616 | 215630 | |
0.51% | 8.27% | 14.90% | 53.16% | 16.39% | 6.78% |
Distribution of computed $\operatorname{GL}_2$ levels by base field and level norm
The set of weights computed for each level varies.
level norm | ||||||||
---|---|---|---|---|---|---|---|---|
1-100 | 101-1000 | 1001-10000 | 10001-50000 | 50001-100000 | 100001-150000 | Total | ||
base field
|
\(\Q(\sqrt{-3}) \) | 3 | 161 | 2368 | 11389 | 14356 | 14526 | 42803 |
0.01% | 0.38% | 5.53% | 26.61% | 33.54% | 33.94% | 22.68% | ||
\(\Q(\sqrt{-1}) \) | 5 | 253 | 3425 | 16061 | 20206 | 39950 | ||
0.01% | 0.63% | 8.57% | 40.20% | 50.58% | 21.16% | |||
\(\Q(\sqrt{-7}) \) | 24 | 477 | 6053 | 27474 | 34028 | |||
0.07% | 1.40% | 17.79% | 80.74% | 18.03% | ||||
\(\Q(\sqrt{-2}) \) | 13 | 417 | 5279 | 23925 | 29634 | |||
0.04% | 1.41% | 17.81% | 80.73% | 15.70% | ||||
\(\Q(\sqrt{-11}) \) | 20 | 368 | 4434 | 20228 | 25050 | |||
0.08% | 1.47% | 17.70% | 80.75% | 13.27% | ||||
\(\Q(\sqrt{-19}) \) | 18 | 252 | 2683 | 1590 | 4543 | |||
0.40% | 5.55% | 59.06% | 35.00% | 2.41% | ||||
\(\Q(\sqrt{-23}) \) | 198 | 2130 | 1212 | 3540 | ||||
5.59% | 60.17% | 34.24% | 1.88% | |||||
\(\Q(\sqrt{-31}) \) | 164 | 1796 | 4108 | 6068 | ||||
2.70% | 29.60% | 67.70% | 3.21% | |||||
\(\Q(\sqrt{-43}) \) | 6 | 100 | 1222 | 713 | 2041 | |||
0.29% | 4.90% | 59.87% | 34.93% | 1.08% | ||||
\(\Q(\sqrt{-67}) \) | 6 | 69 | 872 | 947 | ||||
0.63% | 7.29% | 92.08% | 0.50% | |||||
\(\Q(\sqrt{-163}) \) | 2 | 34 | 122 | 158 | ||||
1.27% | 21.52% | 77.22% | 0.08% |
Distribution of computed $\operatorname{SL}_2$ levels by base field and level norm
The set of weights computed for each level varies.
level norm | |||||||||
---|---|---|---|---|---|---|---|---|---|
1-100 | 101-200 | 201-400 | 401-800 | 801-1600 | 1601-3200 | 3201-6400 | Total | ||
base field
|
\(\Q(\sqrt{-3}) \) | 5 | 1 | 1 | 7 | ||||
71.43% | 14.29% | 14.29% | 0.15% | ||||||
\(\Q(\sqrt{-1}) \) | 63 | 47 | 88 | 196 | 131 | 525 | |||
12.00% | 8.95% | 16.76% | 37.33% | 24.95% | 11.34% | ||||
\(\Q(\sqrt{-7}) \) | 105 | 74 | 142 | 297 | 500 | 142 | 1260 | ||
8.33% | 5.87% | 11.27% | 23.57% | 39.68% | 11.27% | 27.22% | |||
\(\Q(\sqrt{-2}) \) | 107 | 71 | 109 | 218 | 175 | 680 | |||
15.74% | 10.44% | 16.03% | 32.06% | 25.74% | 14.69% | ||||
\(\Q(\sqrt{-11}) \) | 97 | 91 | 132 | 222 | 402 | 202 | 1146 | ||
8.46% | 7.94% | 11.52% | 19.37% | 35.08% | 17.63% | 24.76% | |||
\(\Q(\sqrt{-19}) \) | 74 | 71 | 136 | 99 | 114 | 494 | |||
14.98% | 14.37% | 27.53% | 20.04% | 23.08% | 10.67% | ||||
\(\Q(\sqrt{-5}) \) | 3 | 3 | |||||||
100.00% | 0.06% | ||||||||
\(\Q(\sqrt{-43}) \) | 47 | 51 | 91 | 161 | 1 | 351 | |||
13.39% | 14.53% | 25.93% | 45.87% | 0.28% | 7.58% | ||||
\(\Q(\sqrt{-67}) \) | 39 | 40 | 55 | 1 | 135 | ||||
28.89% | 29.63% | 40.74% | 0.74% | 2.92% | |||||
\(\Q(\sqrt{-163}) \) | 25 | 3 | 28 | ||||||
89.29% | 10.71% | 0.60% |