Properties

Label 6.6.485125.1-41.1-a1
Base field 6.6.485125.1
Conductor norm \( 41 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -5, 2, 8, -4, -2, 1]))
 
gp: K = nfinit(Polrev([1, -5, 2, 8, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{5}+a^{4}+5a^{3}-3a^{2}-4a\right){x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(-3a^{5}+4a^{4}+13a^{3}-14a^{2}-9a+6\right){x}^{2}+\left(-a^{4}+3a^{3}-4a^{2}-3a+3\right){x}-4a^{5}+6a^{4}+11a^{3}-12a^{2}-10a+3\)
sage: E = EllipticCurve([K([0,-4,-3,5,1,-1]),K([6,-9,-14,13,4,-3]),K([-2,1,1,0,0,0]),K([3,-3,-4,3,-1,0]),K([3,-10,-12,11,6,-4])])
 
gp: E = ellinit([Polrev([0,-4,-3,5,1,-1]),Polrev([6,-9,-14,13,4,-3]),Polrev([-2,1,1,0,0,0]),Polrev([3,-3,-4,3,-1,0]),Polrev([3,-10,-12,11,6,-4])], K);
 
magma: E := EllipticCurve([K![0,-4,-3,5,1,-1],K![6,-9,-14,13,4,-3],K![-2,1,1,0,0,0],K![3,-3,-4,3,-1,0],K![3,-10,-12,11,6,-4]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-5a^3+5a)\) = \((a^5-5a^3+5a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 41 \) = \(41\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2a^5+2a^4+12a^3-9a^2-16a+8)\) = \((a^5-5a^3+5a)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -1681 \) = \(-41^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{14540938647674287}{1681} a^{5} + \frac{55342741171488873}{1681} a^{4} - \frac{41785489535847104}{1681} a^{3} - \frac{40862008511943361}{1681} a^{2} + \frac{44715082991653178}{1681} a - \frac{8051386985634292}{1681} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(2 a^{5} - 3 a^{4} - 10 a^{3} + 11 a^{2} + 10 a - 3 : 8 a^{5} - 10 a^{4} - 39 a^{3} + 36 a^{2} + 39 a - 11 : 1\right)$
Height \(0.017230132827428911508020850546813865629\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{3}{4} a^{5} - \frac{3}{2} a^{4} - \frac{15}{4} a^{3} + \frac{23}{4} a^{2} + \frac{13}{4} a - \frac{7}{4} : \frac{11}{8} a^{5} - \frac{11}{8} a^{4} - \frac{51}{8} a^{3} + 5 a^{2} + \frac{19}{4} a - \frac{7}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.017230132827428911508020850546813865629 \)
Period: \( 32440.583247958131610291615723319297318 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 2.40753 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-5a^3+5a)\) \(41\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 41.1-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.