Base field 4.4.2225.1
Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 5 x^{2} + 2 x + 4 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([4, 2, -5, -1, 1]))
gp: K = nfinit(Polrev([4, 2, -5, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 2, -5, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([0,-3/2,-1/2,1/2]),K([-3,-2,1,0]),K([0,1,0,0]),K([1,2,-1,0]),K([2,0,-3,1])])
gp: E = ellinit([Polrev([0,-3/2,-1/2,1/2]),Polrev([-3,-2,1,0]),Polrev([0,1,0,0]),Polrev([1,2,-1,0]),Polrev([2,0,-3,1])], K);
magma: E := EllipticCurve([K![0,-3/2,-1/2,1/2],K![-3,-2,1,0],K![0,1,0,0],K![1,2,-1,0],K![2,0,-3,1]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((1/2a^3-1/2a^2-1/2a+2)\) | = | \((1/2a^3-1/2a^2-1/2a+2)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 19 \) | = | \(19\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((3/2a^3-7/2a^2-5/2a+8)\) | = | \((1/2a^3-1/2a^2-1/2a+2)^{2}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 361 \) | = | \(19^{2}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( -\frac{1170199359725}{722} a^{3} - \frac{162147898405}{722} a^{2} + \frac{5666384793219}{722} a + \frac{2055574156969}{361} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(0\) | |
Torsion structure: | \(\Z/2\Z\oplus\Z/2\Z\) | |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| ||
Torsion generators: | $\left(-a^{2} + 2 a + 2 : -a^{2} + a + 2 : 1\right)$ | $\left(\frac{3}{8} a^{3} - \frac{7}{8} a^{2} - \frac{7}{8} a + \frac{7}{4} : -\frac{1}{8} a^{2} - \frac{1}{8} a - \frac{1}{8} : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 0 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(0\) | ||
Regulator: | \( 1 \) | ||
Period: | \( 434.85492064667811289629217138118454955 \) | ||
Tamagawa product: | \( 2 \) | ||
Torsion order: | \(4\) | ||
Leading coefficient: | \( 1.15236323498953 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((1/2a^3-1/2a^2-1/2a+2)\) | \(19\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2Cs |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class
19.2-a
consists of curves linked by isogenies of
degrees dividing 8.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.