Base field \(\Q(\zeta_{16})^+\)
Generator \(a\), with minimal polynomial \( x^{4} - 4 x^{2} + 2 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, -4, 0, 1]))
gp: K = nfinit(Polrev([2, 0, -4, 0, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, -4, 0, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([0,-2,0,1]),K([1,4,0,-1]),K([0,0,0,0]),K([293,-82,-798,409]),K([-11916,5596,22208,-11769])])
gp: E = ellinit([Polrev([0,-2,0,1]),Polrev([1,4,0,-1]),Polrev([0,0,0,0]),Polrev([293,-82,-798,409]),Polrev([-11916,5596,22208,-11769])], K);
magma: E := EllipticCurve([K![0,-2,0,1],K![1,4,0,-1],K![0,0,0,0],K![293,-82,-798,409],K![-11916,5596,22208,-11769]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((2)\) | = | \((a)^{4}\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 16 \) | = | \(2^{4}\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((8)\) | = | \((a)^{12}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 4096 \) | = | \(2^{12}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( -75602392581248 a^{2} + 258122728722624 \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(0\) | |
Torsion structure: | \(\Z/2\Z\oplus\Z/2\Z\) | |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| ||
Torsion generators: | $\left(9 a^{3} - \frac{35}{2} a^{2} - 10 a + 17 : 9 a^{3} - 17 a^{2} - \frac{1}{2} a + 8 : 1\right)$ | $\left(a^{3} + 7 a^{2} - 14 a - 4 : -5 a^{3} + 11 a^{2} + 3 a - 12 : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 0 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(0\) | ||
Regulator: | \( 1 \) | ||
Period: | \( 619.96478113137415956035614163567087040 \) | ||
Tamagawa product: | \( 1 \) | ||
Torsion order: | \(4\) | ||
Leading coefficient: | \( 0.856213478193024 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((a)\) | \(2\) | \(1\) | \(II^{*}\) | Additive | \(1\) | \(4\) | \(12\) | \(0\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2Cs |
\(5\) | 5B.4.2 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4, 5, 10 and 20.
Its isogeny class
16.1-a
consists of curves linked by isogenies of
degrees dividing 40.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.