Properties

Label 4.4.2048.1-16.1-a9
Base field \(\Q(\zeta_{16})^+\)
Conductor norm \( 16 \)
CM no
Base change no
Q-curve yes
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{16})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - 4 x^{2} + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, -4, 0, 1]))
 
gp: K = nfinit(Polrev([2, 0, -4, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, -4, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-2a\right){x}{y}={x}^{3}+\left(-a^{3}+4a+1\right){x}^{2}+\left(409a^{3}-798a^{2}-82a+293\right){x}-11769a^{3}+22208a^{2}+5596a-11916\)
sage: E = EllipticCurve([K([0,-2,0,1]),K([1,4,0,-1]),K([0,0,0,0]),K([293,-82,-798,409]),K([-11916,5596,22208,-11769])])
 
gp: E = ellinit([Polrev([0,-2,0,1]),Polrev([1,4,0,-1]),Polrev([0,0,0,0]),Polrev([293,-82,-798,409]),Polrev([-11916,5596,22208,-11769])], K);
 
magma: E := EllipticCurve([K![0,-2,0,1],K![1,4,0,-1],K![0,0,0,0],K![293,-82,-798,409],K![-11916,5596,22208,-11769]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((a)^{4}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(2^{4}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((8)\) = \((a)^{12}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4096 \) = \(2^{12}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -75602392581248 a^{2} + 258122728722624 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(9 a^{3} - \frac{35}{2} a^{2} - 10 a + 17 : 9 a^{3} - 17 a^{2} - \frac{1}{2} a + 8 : 1\right)$ $\left(a^{3} + 7 a^{2} - 14 a - 4 : -5 a^{3} + 11 a^{2} + 3 a - 12 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 619.96478113137415956035614163567087040 \)
Tamagawa product: \( 1 \)
Torsion order: \(4\)
Leading coefficient: \( 0.856213478193024 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(1\) \(II^{*}\) Additive \(1\) \(4\) \(12\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(5\) 5B.4.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 5, 10 and 20.
Its isogeny class 16.1-a consists of curves linked by isogenies of degrees dividing 40.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.