Base field 3.3.961.1
Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 10 x + 8 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([8, -10, -1, 1]))
gp: K = nfinit(Polrev([8, -10, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8, -10, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([1,0,0]),K([-1,1,0]),K([-2,-1/2,1/2]),K([7462877426720882640138607519245152578,-14130218892584489931013217519954906083/2,-6151408334958753821769050847112196849/2]),K([-20161796947667300676602389656879723718330935346799904418,38174364638273178291400194444212921470457543144134251711/2,16618716709396809372366318063381491518225891025259152029/2])])
gp: E = ellinit([Polrev([1,0,0]),Polrev([-1,1,0]),Polrev([-2,-1/2,1/2]),Polrev([7462877426720882640138607519245152578,-14130218892584489931013217519954906083/2,-6151408334958753821769050847112196849/2]),Polrev([-20161796947667300676602389656879723718330935346799904418,38174364638273178291400194444212921470457543144134251711/2,16618716709396809372366318063381491518225891025259152029/2])], K);
magma: E := EllipticCurve([K![1,0,0],K![-1,1,0],K![-2,-1/2,1/2],K![7462877426720882640138607519245152578,-14130218892584489931013217519954906083/2,-6151408334958753821769050847112196849/2],K![-20161796947667300676602389656879723718330935346799904418,38174364638273178291400194444212921470457543144134251711/2,16618716709396809372366318063381491518225891025259152029/2]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((-a^2-2a+2)\) | = | \((-1/2a^2-1/2a+3)\cdot(-1/2a^2+1/2a+4)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 4 \) | = | \(2\cdot2\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((a+4)\) | = | \((-1/2a^2-1/2a+3)\cdot(-1/2a^2+1/2a+4)^{4}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 32 \) | = | \(2\cdot2^{4}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{212068284953}{32} a^{2} + \frac{487135796771}{32} a - \frac{257280852307}{16} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(0\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(\frac{1012047966960026891}{4} a^{2} + \frac{1162372787193307213}{2} a - \frac{2455629513151280341}{4} : -\frac{1012047966960026893}{8} a^{2} - 290593196798326803 a + \frac{2455629513151280349}{8} : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 0 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(0\) | ||
Regulator: | \( 1 \) | ||
Period: | \( 101.98608543974520140521768089278751447 \) | ||
Tamagawa product: | \( 2 \) = \(1\cdot2\) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 1.6449368619313742162131884014965728140 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((-1/2a^2-1/2a+3)\) | \(2\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
\((-1/2a^2+1/2a+4)\) | \(2\) | \(2\) | \(I_{4}\) | Non-split multiplicative | \(1\) | \(1\) | \(4\) | \(4\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4 and 8.
Its isogeny class
4.1-a
consists of curves linked by isogenies of
degrees dividing 8.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.