Base field \(\Q(\sqrt{-31}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 8 \); class number \(3\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([8, -1, 1]))
gp: K = nfinit(Polrev([8, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([1,1]),K([-1,1]),K([0,0]),K([21,11]),K([45,-5])])
gp: E = ellinit([Polrev([1,1]),Polrev([-1,1]),Polrev([0,0]),Polrev([21,11]),Polrev([45,-5])], K);
magma: E := EllipticCurve([K![1,1],K![-1,1],K![0,0],K![21,11],K![45,-5]]);
This is not a global minimal model: it is minimal at all primes except \((2,a+1)\). No global minimal model exists.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((10,2a+2)\) | = | \((2,a)\cdot(2,a+1)\cdot(5,a+1)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 20 \) | = | \(2\cdot2\cdot5\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((-98304a+1048576)\) | = | \((2,a)^{18}\cdot(2,a+1)^{15}\cdot(5,a+1)^{3}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 1073741824000 \) | = | \(2^{18}\cdot2^{15}\cdot5^{3}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
Minimal discriminant: | \((4824a-11456)\) | = | \((2,a)^{18}\cdot(2,a+1)^{3}\cdot(5,a+1)^{3}\) |
Minimal discriminant norm: | \( 262144000 \) | = | \(2^{18}\cdot2^{3}\cdot5^{3}\) |
j-invariant: | \( -\frac{55081295373}{32768000} a + \frac{423698409061}{32768000} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) |
Generator | $\left(a - 1 : a + 3 : 1\right)$ |
Height | \(0.92610796154786976646238188645292308199\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(a - 2 : 5 : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 0.92610796154786976646238188645292308199 \) | ||
Period: | \( 2.4482982007962968717125970045712860702 \) | ||
Tamagawa product: | \( 2 \) = \(2\cdot1\cdot1\) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 0.81446997690408424214979520793823205853 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
Primes of good reduction for the curve but which divide the
discriminant of the model above (if any) are included.
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((2,a)\) | \(2\) | \(2\) | \(I_{18}\) | Non-split multiplicative | \(1\) | \(1\) | \(18\) | \(18\) |
\((2,a+1)\) | \(2\) | \(1\) | \(I_{3}\) | Non-split multiplicative | \(1\) | \(1\) | \(3\) | \(3\) |
\((5,a+1)\) | \(5\) | \(1\) | \(I_{3}\) | Non-split multiplicative | \(1\) | \(1\) | \(3\) | \(3\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
\(3\) | 3B.1.2 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3 and 6.
Its isogeny class
20.3-a
consists of curves linked by isogenies of
degrees dividing 6.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.