Properties

Label 4.7031.5t5.a.a
Dimension $4$
Group $S_5$
Conductor $7031$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $S_5$
Conductor: \(7031\)\(\medspace = 79 \cdot 89 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 5.3.7031.1
Galois orbit size: $1$
Smallest permutation container: $S_5$
Parity: odd
Determinant: 1.7031.2t1.a.a
Projective image: $S_5$
Projective stem field: Galois closure of 5.3.7031.1

Defining polynomial

$f(x)$$=$ \( x^{5} - x^{3} - x^{2} - x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: \( x^{2} + 58x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 57 a + 50 + \left(35 a + 28\right)\cdot 59 + \left(49 a + 10\right)\cdot 59^{2} + \left(49 a + 53\right)\cdot 59^{3} + \left(17 a + 56\right)\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 23 + 15\cdot 59 + 46\cdot 59^{2} + 53\cdot 59^{3} + 35\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 21 a + 47 + \left(52 a + 46\right)\cdot 59 + \left(45 a + 21\right)\cdot 59^{2} + \left(55 a + 3\right)\cdot 59^{3} + \left(57 a + 58\right)\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 2 a + 48 + \left(23 a + 7\right)\cdot 59 + \left(9 a + 24\right)\cdot 59^{2} + \left(9 a + 53\right)\cdot 59^{3} + \left(41 a + 24\right)\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 38 a + 9 + \left(6 a + 19\right)\cdot 59 + \left(13 a + 15\right)\cdot 59^{2} + \left(3 a + 13\right)\cdot 59^{3} + \left(a + 1\right)\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character valueComplex conjugation
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$