Properties

Label 2.145.8t17.d
Dimension $2$
Group $C_4\wr C_2$
Conductor $145$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:\(145\)\(\medspace = 5 \cdot 29 \)
Artin number field: Galois closure of 8.4.88410125.1
Galois orbit size: $2$
Smallest permutation container: $C_4\wr C_2$
Parity: odd
Projective image: $D_4$
Projective field: Galois closure of 4.0.3625.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 571 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ \( 62 + 16\cdot 571 + 382\cdot 571^{2} + 560\cdot 571^{3} + 5\cdot 571^{4} + 395\cdot 571^{5} + 144\cdot 571^{6} + 241\cdot 571^{7} +O(571^{8})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 117 + 419\cdot 571 + 205\cdot 571^{2} + 186\cdot 571^{3} + 456\cdot 571^{4} + 240\cdot 571^{5} + 427\cdot 571^{6} + 137\cdot 571^{7} +O(571^{8})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 132 + 283\cdot 571 + 393\cdot 571^{2} + 145\cdot 571^{3} + 317\cdot 571^{4} + 404\cdot 571^{5} + 146\cdot 571^{6} + 61\cdot 571^{7} +O(571^{8})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 256 + 153\cdot 571 + 570\cdot 571^{2} + 485\cdot 571^{3} + 436\cdot 571^{4} + 55\cdot 571^{5} + 274\cdot 571^{6} + 567\cdot 571^{7} +O(571^{8})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 316 + 417\cdot 571 + 85\cdot 571^{3} + 134\cdot 571^{4} + 515\cdot 571^{5} + 296\cdot 571^{6} + 3\cdot 571^{7} +O(571^{8})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 440 + 287\cdot 571 + 177\cdot 571^{2} + 425\cdot 571^{3} + 253\cdot 571^{4} + 166\cdot 571^{5} + 424\cdot 571^{6} + 509\cdot 571^{7} +O(571^{8})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 455 + 151\cdot 571 + 365\cdot 571^{2} + 384\cdot 571^{3} + 114\cdot 571^{4} + 330\cdot 571^{5} + 143\cdot 571^{6} + 433\cdot 571^{7} +O(571^{8})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 510 + 554\cdot 571 + 188\cdot 571^{2} + 10\cdot 571^{3} + 565\cdot 571^{4} + 175\cdot 571^{5} + 426\cdot 571^{6} + 329\cdot 571^{7} +O(571^{8})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4)(2,3)(5,8)(6,7)$
$(2,4,7,5)$
$(2,7)(4,5)$
$(1,6,8,3)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(2,7)(4,5)$ $0$ $0$
$4$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$ $0$
$1$ $4$ $(1,6,8,3)(2,4,7,5)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,3,8,6)(2,5,7,4)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,6,8,3)(2,5,7,4)$ $0$ $0$
$2$ $4$ $(2,4,7,5)$ $-\zeta_{4} + 1$ $\zeta_{4} + 1$
$2$ $4$ $(2,5,7,4)$ $\zeta_{4} + 1$ $-\zeta_{4} + 1$
$2$ $4$ $(1,8)(2,5,7,4)(3,6)$ $\zeta_{4} - 1$ $-\zeta_{4} - 1$
$2$ $4$ $(1,8)(2,4,7,5)(3,6)$ $-\zeta_{4} - 1$ $\zeta_{4} - 1$
$4$ $4$ $(1,5,8,4)(2,3,7,6)$ $0$ $0$
$4$ $8$ $(1,7,6,5,8,2,3,4)$ $0$ $0$
$4$ $8$ $(1,5,3,7,8,4,6,2)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.