Basic invariants
Dimension: | $2$ |
Group: | $C_4\wr C_2$ |
Conductor: | \(145\)\(\medspace = 5 \cdot 29 \) |
Artin number field: | Galois closure of 8.4.88410125.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_4\wr C_2$ |
Parity: | odd |
Projective image: | $D_4$ |
Projective field: | Galois closure of 4.0.3625.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 571 }$ to precision 8.
Roots:
$r_{ 1 }$ | $=$ | \( 62 + 16\cdot 571 + 382\cdot 571^{2} + 560\cdot 571^{3} + 5\cdot 571^{4} + 395\cdot 571^{5} + 144\cdot 571^{6} + 241\cdot 571^{7} +O(571^{8})\) |
$r_{ 2 }$ | $=$ | \( 117 + 419\cdot 571 + 205\cdot 571^{2} + 186\cdot 571^{3} + 456\cdot 571^{4} + 240\cdot 571^{5} + 427\cdot 571^{6} + 137\cdot 571^{7} +O(571^{8})\) |
$r_{ 3 }$ | $=$ | \( 132 + 283\cdot 571 + 393\cdot 571^{2} + 145\cdot 571^{3} + 317\cdot 571^{4} + 404\cdot 571^{5} + 146\cdot 571^{6} + 61\cdot 571^{7} +O(571^{8})\) |
$r_{ 4 }$ | $=$ | \( 256 + 153\cdot 571 + 570\cdot 571^{2} + 485\cdot 571^{3} + 436\cdot 571^{4} + 55\cdot 571^{5} + 274\cdot 571^{6} + 567\cdot 571^{7} +O(571^{8})\) |
$r_{ 5 }$ | $=$ | \( 316 + 417\cdot 571 + 85\cdot 571^{3} + 134\cdot 571^{4} + 515\cdot 571^{5} + 296\cdot 571^{6} + 3\cdot 571^{7} +O(571^{8})\) |
$r_{ 6 }$ | $=$ | \( 440 + 287\cdot 571 + 177\cdot 571^{2} + 425\cdot 571^{3} + 253\cdot 571^{4} + 166\cdot 571^{5} + 424\cdot 571^{6} + 509\cdot 571^{7} +O(571^{8})\) |
$r_{ 7 }$ | $=$ | \( 455 + 151\cdot 571 + 365\cdot 571^{2} + 384\cdot 571^{3} + 114\cdot 571^{4} + 330\cdot 571^{5} + 143\cdot 571^{6} + 433\cdot 571^{7} +O(571^{8})\) |
$r_{ 8 }$ | $=$ | \( 510 + 554\cdot 571 + 188\cdot 571^{2} + 10\cdot 571^{3} + 565\cdot 571^{4} + 175\cdot 571^{5} + 426\cdot 571^{6} + 329\cdot 571^{7} +O(571^{8})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character values | |
$c1$ | $c2$ | |||
$1$ | $1$ | $()$ | $2$ | $2$ |
$1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-2$ | $-2$ |
$2$ | $2$ | $(2,7)(4,5)$ | $0$ | $0$ |
$4$ | $2$ | $(1,4)(2,3)(5,8)(6,7)$ | $0$ | $0$ |
$1$ | $4$ | $(1,6,8,3)(2,4,7,5)$ | $-2 \zeta_{4}$ | $2 \zeta_{4}$ |
$1$ | $4$ | $(1,3,8,6)(2,5,7,4)$ | $2 \zeta_{4}$ | $-2 \zeta_{4}$ |
$2$ | $4$ | $(1,6,8,3)(2,5,7,4)$ | $0$ | $0$ |
$2$ | $4$ | $(2,4,7,5)$ | $-\zeta_{4} + 1$ | $\zeta_{4} + 1$ |
$2$ | $4$ | $(2,5,7,4)$ | $\zeta_{4} + 1$ | $-\zeta_{4} + 1$ |
$2$ | $4$ | $(1,8)(2,5,7,4)(3,6)$ | $\zeta_{4} - 1$ | $-\zeta_{4} - 1$ |
$2$ | $4$ | $(1,8)(2,4,7,5)(3,6)$ | $-\zeta_{4} - 1$ | $\zeta_{4} - 1$ |
$4$ | $4$ | $(1,5,8,4)(2,3,7,6)$ | $0$ | $0$ |
$4$ | $8$ | $(1,7,6,5,8,2,3,4)$ | $0$ | $0$ |
$4$ | $8$ | $(1,5,3,7,8,4,6,2)$ | $0$ | $0$ |