Basic invariants
Dimension: | $14$ |
Group: | $S_7$ |
Conductor: | \(343\!\cdots\!881\)\(\medspace = 242147^{4} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 7.1.242147.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | 21T38 |
Parity: | even |
Determinant: | 1.1.1t1.a.a |
Projective image: | $S_7$ |
Projective stem field: | Galois closure of 7.1.242147.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{7} - 2x^{6} + 2x^{5} - x^{4} - x^{3} + 2x^{2} - x + 1 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: \( x^{2} + 82x + 3 \)
Roots:
$r_{ 1 }$ | $=$ | \( 28 + 20\cdot 89 + 50\cdot 89^{2} + 13\cdot 89^{3} + 64\cdot 89^{4} +O(89^{5})\) |
$r_{ 2 }$ | $=$ | \( 67 a + 27 + \left(5 a + 4\right)\cdot 89 + \left(52 a + 6\right)\cdot 89^{2} + \left(38 a + 84\right)\cdot 89^{3} + \left(32 a + 60\right)\cdot 89^{4} +O(89^{5})\) |
$r_{ 3 }$ | $=$ | \( 82 a + \left(41 a + 25\right)\cdot 89 + \left(23 a + 55\right)\cdot 89^{2} + \left(26 a + 58\right)\cdot 89^{3} + \left(23 a + 22\right)\cdot 89^{4} +O(89^{5})\) |
$r_{ 4 }$ | $=$ | \( 7 a + 40 + \left(47 a + 58\right)\cdot 89 + \left(65 a + 88\right)\cdot 89^{2} + \left(62 a + 40\right)\cdot 89^{3} + \left(65 a + 70\right)\cdot 89^{4} +O(89^{5})\) |
$r_{ 5 }$ | $=$ | \( 22 a + 51 + \left(83 a + 66\right)\cdot 89 + \left(36 a + 8\right)\cdot 89^{2} + \left(50 a + 35\right)\cdot 89^{3} + \left(56 a + 71\right)\cdot 89^{4} +O(89^{5})\) |
$r_{ 6 }$ | $=$ | \( 29 + 13\cdot 89 + 18\cdot 89^{2} + 11\cdot 89^{3} + 83\cdot 89^{4} +O(89^{5})\) |
$r_{ 7 }$ | $=$ | \( 5 + 79\cdot 89 + 39\cdot 89^{2} + 23\cdot 89^{3} + 72\cdot 89^{4} +O(89^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 7 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 7 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $14$ | |
$21$ | $2$ | $(1,2)$ | $6$ | |
$105$ | $2$ | $(1,2)(3,4)(5,6)$ | $2$ | ✓ |
$105$ | $2$ | $(1,2)(3,4)$ | $2$ | |
$70$ | $3$ | $(1,2,3)$ | $2$ | |
$280$ | $3$ | $(1,2,3)(4,5,6)$ | $-1$ | |
$210$ | $4$ | $(1,2,3,4)$ | $0$ | |
$630$ | $4$ | $(1,2,3,4)(5,6)$ | $0$ | |
$504$ | $5$ | $(1,2,3,4,5)$ | $-1$ | |
$210$ | $6$ | $(1,2,3)(4,5)(6,7)$ | $2$ | |
$420$ | $6$ | $(1,2,3)(4,5)$ | $0$ | |
$840$ | $6$ | $(1,2,3,4,5,6)$ | $-1$ | |
$720$ | $7$ | $(1,2,3,4,5,6,7)$ | $0$ | |
$504$ | $10$ | $(1,2,3,4,5)(6,7)$ | $1$ | |
$420$ | $12$ | $(1,2,3,4)(5,6,7)$ | $0$ |