Properties

Label 5.3.ab_j_aj_bn_abl
Base field $\F_{3}$
Dimension $5$
$p$-rank $5$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes

Downloads

Learn more

Invariants

Base field:  $\F_{3}$
Dimension:  $5$
L-polynomial:  $1 - x + 9 x^{2} - 9 x^{3} + 39 x^{4} - 37 x^{5} + 117 x^{6} - 81 x^{7} + 243 x^{8} - 81 x^{9} + 243 x^{10}$
Frobenius angles:  $\pm0.217939461989$, $\pm0.422017682783$, $\pm0.472467981864$, $\pm0.564517065583$, $\pm0.710270671194$
Angle rank:  $5$ (numerical)
Number field:  10.0.7608027501108819.1
Galois group:  $C_2 \wr S_5$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $5$
Slopes:  $[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $443$ $381423$ $14348327$ $3141781251$ $877822707743$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $3$ $27$ $27$ $75$ $253$ $795$ $2327$ $6307$ $19161$ $58827$

Jacobians and polarizations

This isogeny class is principally polarizable, but it is unknown whether it contains a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3}$.

Endomorphism algebra over $\F_{3}$
The endomorphism algebra of this simple isogeny class is 10.0.7608027501108819.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
5.3.b_j_j_bn_bl$2$(not in LMFDB)