Base field: \(\Q(\sqrt{-79}) \)
Generator \(a\), with minimal polynomial \(x^2 - x + 20\); class number \(5\).
Form
Weight: | 2 | |
Level: | 76.4 = \( \left(38, 2 a + 22\right) \) | |
Level norm: | 76 | |
Dimension: | 1 | |
CM: | no | |
Base change: | no | |
Newspace: | 2.0.79.1-76.4 (dimension 4) | |
Sign of functional equation: | $-1$ | |
Analytic rank: | \(0\) | |
L-ratio: | 1 |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
\( 2 \) | 2.1 = \( \left(2, a\right) \) | \( 1 \) |
\( 2 \) | 2.2 = \( \left(2, a + 1\right) \) | \( -1 \) |
\( 19 \) | 19.2 = \( \left(19, a + 11\right) \) | \( -1 \) |
Hecke eigenvalues
The Hecke eigenvalue field is $\Q$. The eigenvalue of the Hecke operator $T_{\mathfrak{p}}$ is $a_{\mathfrak{p}}$. The database contains 100 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues $a_{\mathfrak{p}}$ for primes $\mathfrak{p}$ which do not divide the level.
$N(\mathfrak{p})$ | $\mathfrak{p}$ | $a_{\mathfrak{p}}$ |
---|---|---|
\( 5 \) | 5.1 = \( \left(5, a\right) \) | \( 0 \) |
\( 5 \) | 5.2 = \( \left(5, a + 4\right) \) | \( 3 \) |
\( 9 \) | 9.1 = \( \left(3\right) \) | \( 4 \) |
\( 11 \) | 11.1 = \( \left(11, a + 1\right) \) | \( -3 \) |
\( 11 \) | 11.2 = \( \left(11, a + 9\right) \) | \( -3 \) |
\( 13 \) | 13.1 = \( \left(13, a + 2\right) \) | \( -4 \) |
\( 13 \) | 13.2 = \( \left(13, a + 10\right) \) | \( -4 \) |
\( 19 \) | 19.1 = \( \left(19, a + 7\right) \) | \( -4 \) |
\( 23 \) | 23.1 = \( \left(23, a + 8\right) \) | \( -3 \) |
\( 23 \) | 23.2 = \( \left(23, a + 14\right) \) | \( 0 \) |
\( 31 \) | 31.1 = \( \left(31, a + 6\right) \) | \( -7 \) |
\( 31 \) | 31.2 = \( \left(31, a + 24\right) \) | \( 8 \) |
\( 49 \) | 49.1 = \( \left(7\right) \) | \( 2 \) |
\( 67 \) | 67.1 = \( \left(67, a + 25\right) \) | \( 5 \) |
\( 67 \) | 67.2 = \( \left(67, a + 41\right) \) | \( 2 \) |
\( 73 \) | 73.1 = \( \left(73, a + 16\right) \) | \( -10 \) |
\( 73 \) | 73.2 = \( \left(73, a + 56\right) \) | \( -10 \) |
\( 79 \) | 79.1 = \( \left(-2 a + 1\right) \) | \( -7 \) |
\( 83 \) | 83.1 = \( \left(-2 a + 3\right) \) | \( -12 \) |
\( 83 \) | 83.2 = \( \left(2 a + 1\right) \) | \( -15 \) |