Properties

Label 2.0.79.1-38.2-a
Base field \(\Q(\sqrt{-79}) \)
Weight $2$
Level norm $38$
Level \( \left(38, a + 30\right) \)
Dimension $1$
CM no
Base change no
Sign $+1$
Analytic rank \(0\)

Related objects

Downloads

Learn more

Base field: \(\Q(\sqrt{-79}) \)

Generator \(a\), with minimal polynomial \(x^2 - x + 20\); class number \(5\).

Form

Weight: 2
Level: 38.2 = \( \left(38, a + 30\right) \)
Level norm: 38
Dimension: 1
CM: no
Base change: no
Newspace:2.0.79.1-38.2 (dimension 5)
Sign of functional equation: $+1$
Analytic rank: \(0\)
L-ratio: 5/2

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
\( 2 \) 2.1 = \( \left(2, a\right) \) \( 1 \)
\( 19 \) 19.2 = \( \left(19, a + 11\right) \) \( -1 \)

Hecke eigenvalues

The Hecke eigenvalue field is $\Q$. The eigenvalue of the Hecke operator $T_{\mathfrak{p}}$ is $a_{\mathfrak{p}}$. The database contains 100 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues $a_{\mathfrak{p}}$ for primes $\mathfrak{p}$ which do not divide the level.

$N(\mathfrak{p})$ $\mathfrak{p}$ $a_{\mathfrak{p}}$
\( 2 \) 2.2 = \( \left(2, a + 1\right) \) \( 1 \)
\( 5 \) 5.1 = \( \left(5, a\right) \) \( -2 \)
\( 5 \) 5.2 = \( \left(5, a + 4\right) \) \( 0 \)
\( 9 \) 9.1 = \( \left(3\right) \) \( 2 \)
\( 11 \) 11.1 = \( \left(11, a + 1\right) \) \( 4 \)
\( 11 \) 11.2 = \( \left(11, a + 9\right) \) \( 0 \)
\( 13 \) 13.1 = \( \left(13, a + 2\right) \) \( -2 \)
\( 13 \) 13.2 = \( \left(13, a + 10\right) \) \( -6 \)
\( 19 \) 19.1 = \( \left(19, a + 7\right) \) \( -6 \)
\( 23 \) 23.1 = \( \left(23, a + 8\right) \) \( -4 \)
\( 23 \) 23.2 = \( \left(23, a + 14\right) \) \( 2 \)
\( 31 \) 31.1 = \( \left(31, a + 6\right) \) \( 4 \)
\( 31 \) 31.2 = \( \left(31, a + 24\right) \) \( -8 \)
\( 49 \) 49.1 = \( \left(7\right) \) \( 10 \)
\( 67 \) 67.1 = \( \left(67, a + 25\right) \) \( 8 \)
\( 67 \) 67.2 = \( \left(67, a + 41\right) \) \( -4 \)
\( 73 \) 73.1 = \( \left(73, a + 16\right) \) \( 10 \)
\( 73 \) 73.2 = \( \left(73, a + 56\right) \) \( 14 \)
\( 79 \) 79.1 = \( \left(-2 a + 1\right) \) \( 16 \)
\( 83 \) 83.1 = \( \left(-2 a + 3\right) \) \( -4 \)
Display number of eigenvalues