Properties

Label 2.0.59.1-140.4-a
Base field \(\Q(\sqrt{-59}) \)
Weight $2$
Level norm $140$
Level \( \left(-2 a - 8\right) \)
Dimension $1$
CM no
Base change no
Sign $-1$
Analytic rank odd

Related objects

Downloads

Learn more

Base field: \(\Q(\sqrt{-59}) \)

Generator \(a\), with minimal polynomial \(x^2 - x + 15\); class number \(3\).

Form

Weight: 2
Level: 140.4 = \( \left(-2 a - 8\right) \)
Level norm: 140
Dimension: 1
CM: no
Base change: no
Newspace:2.0.59.1-140.4 (dimension 1)
Sign of functional equation: $-1$
Analytic rank: odd

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
\( 4 \) 4.1 = \( \left(2\right) \) \( -1 \)
\( 5 \) 5.2 = \( \left(5, a + 4\right) \) \( 1 \)
\( 7 \) 7.2 = \( \left(7, a + 4\right) \) \( -1 \)

Hecke eigenvalues

The Hecke eigenvalue field is $\Q$. The eigenvalue of the Hecke operator $T_{\mathfrak{p}}$ is $a_{\mathfrak{p}}$. The database contains 100 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues $a_{\mathfrak{p}}$ for primes $\mathfrak{p}$ which do not divide the level.

$N(\mathfrak{p})$ $\mathfrak{p}$ $a_{\mathfrak{p}}$
\( 3 \) 3.1 = \( \left(3, a\right) \) \( -2 \)
\( 3 \) 3.2 = \( \left(3, a + 2\right) \) \( 1 \)
\( 5 \) 5.1 = \( \left(5, a\right) \) \( 0 \)
\( 7 \) 7.1 = \( \left(7, a + 2\right) \) \( -1 \)
\( 17 \) 17.1 = \( \left(a + 1\right) \) \( 0 \)
\( 17 \) 17.2 = \( \left(a - 2\right) \) \( 0 \)
\( 19 \) 19.1 = \( \left(19, a + 6\right) \) \( 2 \)
\( 19 \) 19.2 = \( \left(19, a + 12\right) \) \( 2 \)
\( 29 \) 29.1 = \( \left(29, a + 8\right) \) \( 0 \)
\( 29 \) 29.2 = \( \left(29, a + 20\right) \) \( 6 \)
\( 41 \) 41.1 = \( \left(41, a + 16\right) \) \( 0 \)
\( 41 \) 41.2 = \( \left(41, a + 24\right) \) \( 3 \)
\( 53 \) 53.1 = \( \left(53, a + 21\right) \) \( -12 \)
\( 53 \) 53.2 = \( \left(53, a + 31\right) \) \( 3 \)
\( 59 \) 59.1 = \( \left(-2 a + 1\right) \) \( -12 \)
\( 71 \) 71.1 = \( \left(a + 7\right) \) \( 0 \)
\( 71 \) 71.2 = \( \left(a - 8\right) \) \( 9 \)
\( 79 \) 79.1 = \( \left(79, a + 19\right) \) \( -1 \)
\( 79 \) 79.2 = \( \left(79, a + 59\right) \) \( -10 \)
\( 107 \) 107.1 = \( \left(107, a + 17\right) \) \( -3 \)
Display number of eigenvalues