Learn more

Refine search


Results (1-50 of 6186 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1.1-a1 1.1-a \(\Q(\sqrt{6}) \) \( 1 \) 0 $\Z/6\Z$ $-8$ $N(\mathrm{U}(1))$ $1$ $50.75994773$ 0.287814748 \( 8000 \) \( \bigl[a\) , \( -a + 1\) , \( a + 1\) , \( -3 a - 1\) , \( -2 a - 1\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-3a-1\right){x}-2a-1$
1.1-a2 1.1-a \(\Q(\sqrt{6}) \) \( 1 \) 0 $\Z/6\Z$ $-8$ $N(\mathrm{U}(1))$ $1$ $50.75994773$ 0.287814748 \( 8000 \) \( \bigl[a\) , \( a + 1\) , \( a + 1\) , \( 2 a - 1\) , \( a - 1\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(2a-1\right){x}+a-1$
1.1-a3 1.1-a \(\Q(\sqrt{6}) \) \( 1 \) 0 $\Z/2\Z$ $-72$ $N(\mathrm{U}(1))$ $1$ $5.639994193$ 0.287814748 \( -77092288000 a + 188837384000 \) \( \bigl[a\) , \( a + 1\) , \( a + 1\) , \( 67 a - 161\) , \( 458 a - 1122\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(67a-161\right){x}+458a-1122$
1.1-a4 1.1-a \(\Q(\sqrt{6}) \) \( 1 \) 0 $\Z/6\Z$ $-72$ $N(\mathrm{U}(1))$ $1$ $50.75994773$ 0.287814748 \( -77092288000 a + 188837384000 \) \( \bigl[a\) , \( -a + 1\) , \( a + 1\) , \( -18 a - 41\) , \( 56 a + 138\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-18a-41\right){x}+56a+138$
1.1-a5 1.1-a \(\Q(\sqrt{6}) \) \( 1 \) 0 $\Z/2\Z$ $-72$ $N(\mathrm{U}(1))$ $1$ $5.639994193$ 0.287814748 \( 77092288000 a + 188837384000 \) \( \bigl[a\) , \( -a + 1\) , \( a + 1\) , \( -68 a - 161\) , \( -459 a - 1122\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-68a-161\right){x}-459a-1122$
1.1-a6 1.1-a \(\Q(\sqrt{6}) \) \( 1 \) 0 $\Z/6\Z$ $-72$ $N(\mathrm{U}(1))$ $1$ $50.75994773$ 0.287814748 \( 77092288000 a + 188837384000 \) \( \bigl[a\) , \( a + 1\) , \( a + 1\) , \( 17 a - 41\) , \( -57 a + 138\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(17a-41\right){x}-57a+138$
10.1-a1 10.1-a \(\Q(\sqrt{6}) \) \( 2 \cdot 5 \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $35.64539671$ 0.808454015 \( \frac{2849985813237}{10} a - \frac{3491001283144}{5} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -166 a - 413\) , \( 1827 a + 4480\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-166a-413\right){x}+1827a+4480$
10.1-a2 10.1-a \(\Q(\sqrt{6}) \) \( 2 \cdot 5 \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $35.64539671$ 0.808454015 \( \frac{1061271}{500} a - \frac{656416}{125} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -a - 3\) , \( 5 a + 12\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-3\right){x}+5a+12$
10.1-a3 10.1-a \(\Q(\sqrt{6}) \) \( 2 \cdot 5 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.960599634$ 0.808454015 \( -\frac{21355471243}{62500000} a + \frac{1734442691}{1953125} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 9 a + 22\) , \( -133 a - 326\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(9a+22\right){x}-133a-326$
10.1-b1 10.1-b \(\Q(\sqrt{6}) \) \( 2 \cdot 5 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.683258437$ 1.255225901 \( \frac{2849985813237}{10} a - \frac{3491001283144}{5} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 117 a - 292\) , \( 1111 a - 2738\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(117a-292\right){x}+1111a-2738$
10.1-b2 10.1-b \(\Q(\sqrt{6}) \) \( 2 \cdot 5 \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $6.149325941$ 1.255225901 \( \frac{1061271}{500} a - \frac{656416}{125} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 2 a - 2\) , \( 2 a - 4\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(2a-2\right){x}+2a-4$
10.1-b3 10.1-b \(\Q(\sqrt{6}) \) \( 2 \cdot 5 \) 0 $\Z/9\Z$ $\mathrm{SU}(2)$ $1$ $6.149325941$ 1.255225901 \( -\frac{21355471243}{62500000} a + \frac{1734442691}{1953125} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -8 a + 23\) , \( -2 a + 7\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-8a+23\right){x}-2a+7$
10.2-a1 10.2-a \(\Q(\sqrt{6}) \) \( 2 \cdot 5 \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $35.64539671$ 0.808454015 \( -\frac{2849985813237}{10} a - \frac{3491001283144}{5} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 166 a - 413\) , \( -1827 a + 4480\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(166a-413\right){x}-1827a+4480$
10.2-a2 10.2-a \(\Q(\sqrt{6}) \) \( 2 \cdot 5 \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $35.64539671$ 0.808454015 \( -\frac{1061271}{500} a - \frac{656416}{125} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( a - 3\) , \( -5 a + 12\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a-3\right){x}-5a+12$
10.2-a3 10.2-a \(\Q(\sqrt{6}) \) \( 2 \cdot 5 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.960599634$ 0.808454015 \( \frac{21355471243}{62500000} a + \frac{1734442691}{1953125} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -9 a + 22\) , \( 133 a - 326\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-9a+22\right){x}+133a-326$
10.2-b1 10.2-b \(\Q(\sqrt{6}) \) \( 2 \cdot 5 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.683258437$ 1.255225901 \( -\frac{2849985813237}{10} a - \frac{3491001283144}{5} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -117 a - 292\) , \( -1111 a - 2738\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-117a-292\right){x}-1111a-2738$
10.2-b2 10.2-b \(\Q(\sqrt{6}) \) \( 2 \cdot 5 \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $6.149325941$ 1.255225901 \( -\frac{1061271}{500} a - \frac{656416}{125} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -2 a - 2\) , \( -2 a - 4\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-2a-2\right){x}-2a-4$
10.2-b3 10.2-b \(\Q(\sqrt{6}) \) \( 2 \cdot 5 \) 0 $\Z/9\Z$ $\mathrm{SU}(2)$ $1$ $6.149325941$ 1.255225901 \( \frac{21355471243}{62500000} a + \frac{1734442691}{1953125} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( 8 a + 23\) , \( 2 a + 7\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(8a+23\right){x}+2a+7$
16.1-a1 16.1-a \(\Q(\sqrt{6}) \) \( 2^{4} \) 0 $\Z/2\Z$ $-8$ $N(\mathrm{U}(1))$ $1$ $25.37997386$ 1.295166367 \( 8000 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 4 a - 6\) , \( 6 a - 16\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(4a-6\right){x}+6a-16$
16.1-a2 16.1-a \(\Q(\sqrt{6}) \) \( 2^{4} \) 0 $\Z/2\Z$ $-8$ $N(\mathrm{U}(1))$ $1$ $25.37997386$ 1.295166367 \( 8000 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -4 a - 6\) , \( -6 a - 16\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-4a-6\right){x}-6a-16$
16.1-a3 16.1-a \(\Q(\sqrt{6}) \) \( 2^{4} \) 0 $\Z/2\Z$ $-72$ $N(\mathrm{U}(1))$ $1$ $2.819997096$ 1.295166367 \( -77092288000 a + 188837384000 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 264 a - 646\) , \( 3782 a - 9264\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(264a-646\right){x}+3782a-9264$
16.1-a4 16.1-a \(\Q(\sqrt{6}) \) \( 2^{4} \) 0 $\Z/2\Z$ $-72$ $N(\mathrm{U}(1))$ $1$ $25.37997386$ 1.295166367 \( -77092288000 a + 188837384000 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -64 a - 166\) , \( 418 a + 1056\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-64a-166\right){x}+418a+1056$
16.1-a5 16.1-a \(\Q(\sqrt{6}) \) \( 2^{4} \) 0 $\Z/2\Z$ $-72$ $N(\mathrm{U}(1))$ $1$ $25.37997386$ 1.295166367 \( 77092288000 a + 188837384000 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 64 a - 166\) , \( -418 a + 1056\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(64a-166\right){x}-418a+1056$
16.1-a6 16.1-a \(\Q(\sqrt{6}) \) \( 2^{4} \) 0 $\Z/2\Z$ $-72$ $N(\mathrm{U}(1))$ $1$ $2.819997096$ 1.295166367 \( 77092288000 a + 188837384000 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -264 a - 646\) , \( -3782 a - 9264\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-264a-646\right){x}-3782a-9264$
23.1-a1 23.1-a \(\Q(\sqrt{6}) \) \( 23 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.38577982$ 2.119988428 \( -\frac{66417408}{23} a + \frac{162689472}{23} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( a - 1\) , \( -1\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(a-1\right){x}-1$
23.1-a2 23.1-a \(\Q(\sqrt{6}) \) \( 23 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $20.77155964$ 2.119988428 \( \frac{1596672}{529} a + \frac{6322752}{529} \) \( \bigl[a\) , \( a\) , \( 1\) , \( 11 a - 23\) , \( 20 a - 47\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(11a-23\right){x}+20a-47$
23.1-b1 23.1-b \(\Q(\sqrt{6}) \) \( 23 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.156973252$ $42.58064027$ 0.682185096 \( -\frac{66417408}{23} a + \frac{162689472}{23} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( 10 a + 23\) , \( 197 a + 482\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(10a+23\right){x}+197a+482$
23.1-b2 23.1-b \(\Q(\sqrt{6}) \) \( 23 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.078486626$ $42.58064027$ 0.682185096 \( \frac{1596672}{529} a + \frac{6322752}{529} \) \( \bigl[a\) , \( a\) , \( 1\) , \( 1\) , \( 0\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+a{x}^{2}+{x}$
23.2-a1 23.2-a \(\Q(\sqrt{6}) \) \( 23 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $20.77155964$ 2.119988428 \( -\frac{1596672}{529} a + \frac{6322752}{529} \) \( \bigl[a\) , \( -a\) , \( 1\) , \( -12 a - 23\) , \( -20 a - 47\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-12a-23\right){x}-20a-47$
23.2-a2 23.2-a \(\Q(\sqrt{6}) \) \( 23 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.38577982$ 2.119988428 \( \frac{66417408}{23} a + \frac{162689472}{23} \) \( \bigl[a\) , \( -a\) , \( a + 1\) , \( -2 a - 1\) , \( -a - 1\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-2a-1\right){x}-a-1$
23.2-b1 23.2-b \(\Q(\sqrt{6}) \) \( 23 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.078486626$ $42.58064027$ 0.682185096 \( -\frac{1596672}{529} a + \frac{6322752}{529} \) \( \bigl[a\) , \( -a\) , \( 1\) , \( -a + 1\) , \( 0\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-a+1\right){x}$
23.2-b2 23.2-b \(\Q(\sqrt{6}) \) \( 23 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.156973252$ $42.58064027$ 0.682185096 \( \frac{66417408}{23} a + \frac{162689472}{23} \) \( \bigl[a\) , \( -a\) , \( a + 1\) , \( -11 a + 23\) , \( -198 a + 482\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-11a+23\right){x}-198a+482$
24.1-a1 24.1-a \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.683508517$ 1.160141318 \( \frac{207646}{6561} \) \( \bigl[a\) , \( -1\) , \( a\) , \( 1\) , \( 21\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+{x}+21$
24.1-a2 24.1-a \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $11.36701703$ 1.160141318 \( \frac{2048}{3} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -14 a + 35\) , \( 67 a - 164\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-14a+35\right){x}+67a-164$
24.1-a3 24.1-a \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $22.73403407$ 1.160141318 \( \frac{35152}{9} \) \( \bigl[a\) , \( -1\) , \( a\) , \( -4\) , \( -2\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-4{x}-2$
24.1-a4 24.1-a \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $22.73403407$ 1.160141318 \( \frac{1556068}{81} \) \( \bigl[a\) , \( -1\) , \( a\) , \( -9\) , \( 3\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-9{x}+3$
24.1-a5 24.1-a \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.683508517$ 1.160141318 \( \frac{28756228}{3} \) \( \bigl[a\) , \( -1\) , \( a\) , \( -19\) , \( -29\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-19{x}-29$
24.1-a6 24.1-a \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $22.73403407$ 1.160141318 \( \frac{3065617154}{9} \) \( \bigl[a\) , \( -1\) , \( a\) , \( -99\) , \( 345\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-99{x}+345$
24.1-b1 24.1-b \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.079273864$ $2.325279868$ 1.024545539 \( \frac{207646}{6561} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( -78 a + 194\) , \( 4376 a - 10718\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-78a+194\right){x}+4376a-10718$
24.1-b2 24.1-b \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.539636932$ $18.60223895$ 1.024545539 \( \frac{2048}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}+{x}$
24.1-b3 24.1-b \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1.079273864$ $37.20447790$ 1.024545539 \( \frac{35152}{9} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( 22 a - 51\) , \( -78 a + 192\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(22a-51\right){x}-78a+192$
24.1-b4 24.1-b \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.539636932$ $9.301119475$ 1.024545539 \( \frac{1556068}{81} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( 122 a - 296\) , \( 1012 a - 2478\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(122a-296\right){x}+1012a-2478$
24.1-b5 24.1-b \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \) $1$ $\Z/8\Z$ $\mathrm{SU}(2)$ $0.539636932$ $37.20447790$ 1.024545539 \( \frac{28756228}{3} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -322 a - 786\) , \( 5124 a + 12552\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-322a-786\right){x}+5124a+12552$
24.1-b6 24.1-b \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.079273864$ $2.325279868$ 1.024545539 \( \frac{3065617154}{9} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -1922 a - 4706\) , \( -70528 a - 172758\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1922a-4706\right){x}-70528a-172758$
25.2-a1 25.2-a \(\Q(\sqrt{6}) \) \( 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $10.14732862$ 2.071314782 \( -118784 a - 290816 \) \( \bigl[0\) , \( -1\) , \( a + 1\) , \( -a - 2\) , \( -a - 3\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a-2\right){x}-a-3$
25.2-a2 25.2-a \(\Q(\sqrt{6}) \) \( 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $10.14732862$ 2.071314782 \( 1835626496 a - 4496347136 \) \( \bigl[0\) , \( -1\) , \( a + 1\) , \( 19 a - 12\) , \( -31 a + 117\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(19a-12\right){x}-31a+117$
25.2-b1 25.2-b \(\Q(\sqrt{6}) \) \( 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.99242927$ 2.447944375 \( -\frac{213248}{625} a + \frac{84032}{625} \) \( \bigl[a\) , \( -a - 1\) , \( 1\) , \( -2 a + 2\) , \( 5\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2a+2\right){x}+5$
25.2-b2 25.2-b \(\Q(\sqrt{6}) \) \( 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $23.98485855$ 2.447944375 \( \frac{8704256}{25} a + \frac{21394496}{25} \) \( \bigl[a\) , \( -1\) , \( a + 1\) , \( 75 a - 188\) , \( -347 a + 847\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(75a-188\right){x}-347a+847$
25.2-c1 25.2-c \(\Q(\sqrt{6}) \) \( 5^{2} \) 0 $\Z/5\Z$ $\mathrm{SU}(2)$ $1$ $29.38675386$ 0.239941840 \( -118784 a - 290816 \) \( \bigl[0\) , \( a - 1\) , \( 1\) , \( -3 a + 8\) , \( 13 a - 32\bigr] \) ${y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-3a+8\right){x}+13a-32$
25.2-c2 25.2-c \(\Q(\sqrt{6}) \) \( 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.175470154$ 0.239941840 \( 1835626496 a - 4496347136 \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( 685 a + 1678\) , \( -11772 a - 28836\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(685a+1678\right){x}-11772a-28836$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.